cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102736 Number of permutations of n elements without cycles whose length is a multiple of 3.

Original entry on oeis.org

1, 1, 2, 4, 16, 80, 400, 2800, 22400, 179200, 1792000, 19712000, 216832000, 2818816000, 39463424000, 552487936000, 8839806976000, 150276718592000, 2554704216064000, 48539380105216000, 970787602104320000, 19415752042086400000, 427146544925900800000, 9824370533295718400000, 225960522265801523200000, 5649013056645038080000000, 146874339472770990080000000, 3818732826292045742080000000
Offset: 0

Views

Author

Vladeta Jovovic, Feb 08 2005

Keywords

Comments

Differs from A247007 first at n=27. - Alois P. Heinz, Sep 09 2014

Examples

			G.f. = 1 + x + 2*x^2 + 4*x^3 + 16*x^4 + 80*x^5 + 400*x^6 + 2800*x^7 + ...
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(`if`(
          irem(j, 3)=0, 0, a(n-j)*(j-1)!*binomial(n-1, j-1)), j=1..n))
        end:
    seq(a(n), n=0..27);  # Alois P. Heinz, Jul 31 2017
  • Mathematica
    nn=21;a=Sum[x^n/n,{n,3,nn,3}];Range[0,nn]!CoefficientList[Series[Exp[Log[1/(1-x)]-a],{x,0,nn}],x]  (* Geoffrey Critzer, Nov 11 2012 *)
    a[ n_] := If[ n < 0, 0, n! With[{m = Quotient[n, 3]}, (-1)^m Binomial[-2/3, m]]]; (* Michael Somos, Aug 05 2016 *)
  • PARI
    {a(n) = my(m); if( n<0, 0, m = n\3; n! * (-1)^m * binomial(-2/3, m))}; /* Michael Somos, Aug 05 2016 */

Formula

E.g.f.: (1-x^3)^(1/3)/(1-x).
a(n) ~ n! * 3^(1/3) / (GAMMA(2/3) * n^(1/3)). - Vaclav Kotesovec, Mar 15 2014