cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102860 Number of ways to change three non-identical letters in the word aabbccdd..., where there are n types of letters.

Original entry on oeis.org

0, 16, 64, 160, 320, 560, 896, 1344, 1920, 2640, 3520, 4576, 5824, 7280, 8960, 10880, 13056, 15504, 18240, 21280, 24640, 28336, 32384, 36800, 41600, 46800, 52416, 58464, 64960, 71920, 79360, 87296, 95744, 104720, 114240, 124320, 134976, 146224
Offset: 2

Views

Author

Zerinvary Lajos, Mar 01 2005

Keywords

Comments

There are two ways to change abc: abc -> bca and abc -> cab, that's why we get 2*C(2n,3). There are 2n*(2n-2) = 4n*(n-1) = 8*C(n,2) cases when the two chosen letters are identical, that's why we get -8*C(n,2). Thanks to Miklos Kristof for help.
A diagonal of A059056. - Zerinvary Lajos, Jun 18 2007
With offset "1", a(n) is 16 times the self convolution of n. - Wesley Ivan Hurt, Apr 06 2015
Number of orbits of Aut(Z^7) as function of the infinity norm (n+2) of the representative integer lattice point of the orbit, when the cardinality of the orbit is equal to 53760. - Philippe A.J.G. Chevalier, Dec 28 2015

Examples

			a(4) = 64 = 2*C(8,3) - 8*C(4,2) = 2*56 - 8*6 = 112 - 48.
		

Crossrefs

Programs

Formula

a(n) = 16*C(n, 3) = 2*C(2*n, 3) - 8*C(n, 2).
From R. J. Mathar, Mar 09 2009: (Start)
G.f.: 16*x^3/(1-x)^4.
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4).
a(n) = 8*n*(n-1)*(n-2)/3. (End)
a(n) = 16*A000292(n-2). - J. M. Bergot, May 29 2014
E.g.f.: 8*exp(x)*x^3/3. - Stefano Spezia, May 19 2021
From Amiram Eldar, Sep 04 2022: (Start)
Sum_{n>=3} 1/a(n) = 3/32.
Sum_{n>=3} (-1)^(n+1)/a(n) = 3*(8*log(2)-5)/32. (End)