A102860 Number of ways to change three non-identical letters in the word aabbccdd..., where there are n types of letters.
0, 16, 64, 160, 320, 560, 896, 1344, 1920, 2640, 3520, 4576, 5824, 7280, 8960, 10880, 13056, 15504, 18240, 21280, 24640, 28336, 32384, 36800, 41600, 46800, 52416, 58464, 64960, 71920, 79360, 87296, 95744, 104720, 114240, 124320, 134976, 146224
Offset: 2
Examples
a(4) = 64 = 2*C(8,3) - 8*C(4,2) = 2*56 - 8*6 = 112 - 48.
Links
- Stefano Spezia, Table of n, a(n) for n = 2..10000
- Mark Roger Sepanski, On Divisibility of Convolutions of Central Binomial Coefficients, Electronic Journal of Combinatorics, 21 (1) 2014, Article P1.32.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Magma
[8*n*(n-1)*(n-2)/3 : n in [2..50]]; // Wesley Ivan Hurt, Apr 06 2015
-
Maple
A102860:=n->8*n*(n-1)*(n-2)/3: seq(A102860(n), n=2..50); # Wesley Ivan Hurt, Apr 06 2015
-
Mathematica
Table[8n(n-1)(n-2)/3,{n,2,50}] (* Wesley Ivan Hurt, Apr 06 2015 *) LinearRecurrence[{4,-6,4,-1},{0,16,64,160},50] (* Harvey P. Dale, May 20 2021 *)
-
PARI
concat([0],Vec(16*x^3/(1-x)^4+O(x^40))) \\ Stefano Spezia, May 22 2021
Formula
a(n) = 16*C(n, 3) = 2*C(2*n, 3) - 8*C(n, 2).
From R. J. Mathar, Mar 09 2009: (Start)
G.f.: 16*x^3/(1-x)^4.
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4).
a(n) = 8*n*(n-1)*(n-2)/3. (End)
a(n) = 16*A000292(n-2). - J. M. Bergot, May 29 2014
E.g.f.: 8*exp(x)*x^3/3. - Stefano Spezia, May 19 2021
From Amiram Eldar, Sep 04 2022: (Start)
Sum_{n>=3} 1/a(n) = 3/32.
Sum_{n>=3} (-1)^(n+1)/a(n) = 3*(8*log(2)-5)/32. (End)
Comments