cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A348654 Indices of records in the sequence of unitary harmonic means A103339(k)/A103340(k).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 28, 30, 42, 60, 84, 105, 120, 140, 180, 210, 330, 390, 420, 660, 780, 840, 1092, 1155, 1260, 1540, 1820, 1980, 2310, 2730, 3570, 3990, 4290, 4620, 5460, 7140, 7980, 8580, 9240, 10920, 13860, 16380, 20020, 23940, 25740, 27720, 30030
Offset: 1

Views

Author

Amiram Eldar, Oct 28 2021

Keywords

Examples

			The unitary harmonic means of the first 6 positive integers are 1 < 4/3 < 3/2 < 8/5 < 5/3 < 2. The next record, A103339(10)/A103340(10) = 20/9, occurs at 10. Therefore, the first 7 terms of this sequence are 1, 2, 3, 4, 5, 6 and 10.
		

Crossrefs

The unitary version of A179971.

Programs

  • Mathematica
    f[p_, e_] := 2/(1 + p^(-e)); uhmeam[n_] := Times @@ f @@@ FactorInteger[n]; s = {}; max = 0; Do[u1 = uhmeam[n]; If[u1 > max, max = u1; AppendTo[s, n]], {n, 1, 10^5}]; s

A006086 Unitary harmonic numbers (those for which the unitary harmonic mean is an integer).

Original entry on oeis.org

1, 6, 45, 60, 90, 420, 630, 1512, 3780, 5460, 7560, 8190, 9100, 15925, 16632, 27300, 31500, 40950, 46494, 51408, 55125, 64260, 66528, 81900, 87360, 95550, 143640, 163800, 172900, 185976, 232470, 257040, 330750, 332640, 464940, 565488, 598500, 646425, 661500
Offset: 1

Views

Author

Keywords

Comments

Let ud(n) and usigma(n) be number of and sum of unitary divisors of n; then the unitary harmonic mean of the unitary divisors is H(n) = n*ud(n)/usigma(n). - Emeric Deutsch, Dec 22 2004
A103340(a(n)) = 1; A103339(a(n)) = A006087(n). - Reinhard Zumkeller, Mar 17 2012

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A006087 for more info.

Programs

  • Haskell
    a006086 n = a006086_list !! (n-1)
    a006086_list = filter ((== 1) . a103340) [1..]
    -- Reinhard Zumkeller, Mar 17 2012
    
  • Mathematica
    ud[n_] := 2^PrimeNu[n]; usigma[n_] := Sum[ If[ GCD[d, n/d] == 1, d, 0], {d, Divisors[n]}]; uhm[n_] := n*ud[n]/usigma[n]; Reap[ Do[ If[ IntegerQ[uhm[n]], Print[n]; Sow[n]], {n, 1, 10^6}]][[2, 1]] (* Jean-François Alcover, May 16 2013 *)
  • PARI
    udivs(n) = {my(d = divisors(n)); select(x->(gcd(x, n/x)==1), d); }
    isok(n) = my(v=udivs(n)); denominator(n*#v/vecsum(v))==1; \\ Michel Marcus, May 07 2017
    
  • PARI
    is(n,f=factor(n))=(n<<(#f~))%sumdivmult([n,f], d, if(gcd(d, n/d)==1, d))==0 \\ Charles R Greathouse IV, Nov 05 2021
    
  • PARI
    list(lim)=my(v=List()); forfactored(n=1,lim\1, if((n[1]<Charles R Greathouse IV, Nov 05 2021

Formula

If m is a term and omega(m) = A001221(m) = k, then m < 2^(k*2^k) (Goto, 2007). - Amiram Eldar, Jun 06 2020

Extensions

More terms from Emeric Deutsch, Dec 22 2004

A103339 Numerator of the unitary harmonic mean (i.e., the harmonic mean of the unitary divisors) of the positive integer n.

Original entry on oeis.org

1, 4, 3, 8, 5, 2, 7, 16, 9, 20, 11, 12, 13, 7, 5, 32, 17, 12, 19, 8, 21, 22, 23, 8, 25, 52, 27, 14, 29, 10, 31, 64, 11, 68, 35, 72, 37, 38, 39, 80, 41, 7, 43, 44, 3, 23, 47, 48, 49, 100, 17, 104, 53, 18, 55, 28, 57, 116, 59, 4, 61, 31, 63, 128, 65, 11, 67, 136, 23, 35, 71, 16, 73
Offset: 1

Views

Author

Emeric Deutsch, Jan 31 2005

Keywords

Examples

			1, 4/3, 3/2, 8/5, 5/3, 2, ...
a(8) = 16 because the unitary divisors of 8 are {1,8} and 2/(1/1 + 1/8) = 16/9.
		

Crossrefs

Cf. A103340 (denominators), A099377, A099378.

Programs

  • Haskell
    import Data.Ratio ((%), numerator)
    a103339 = numerator . uhm where uhm n = (n * a034444 n) % (a034448 n)
    -- Reinhard Zumkeller, Mar 17 2012
    
  • Maple
    with(numtheory): udivisors:=proc(n) local A, k: A:={}: for k from 1 to tau(n) do if gcd(divisors(n)[k],n/divisors(n)[k])=1 then A:=A union {divisors(n)[k]} else A:=A fi od end: utau:=n->nops(udivisors(n)): usigma:=n->sum(udivisors(n)[j],j=1..nops(udivisors(n))): uH:=n->n*utau(n)/usigma(n):seq(numer(uH(n)),n=1..81);
  • Mathematica
    ud[n_] := 2^PrimeNu[n]; usigma[n_] := DivisorSum[n, If[GCD[#, n/#] == 1, #, 0]&]; a[1] = 1; a[n_] := Numerator[n*ud[n]/usigma[n]]; Array[a, 100] (* Jean-François Alcover, Dec 03 2016 *)
    a[n_] := Numerator[n * Times @@ (2 / (1 + Power @@@ FactorInteger[n]))]; a[1] = 1; Array[a, 100] (* Amiram Eldar, Mar 10 2023 *)
  • PARI
    a(n) = {my(f = factor(n)); numerator(n * prod(i=1, #f~, 2/(1 + f[i, 1]^f[i, 2]))); } \\ Amiram Eldar, Mar 10 2023
  • Python
    from sympy import gcd
    from sympy.ntheory.factor_ import udivisor_sigma
    def A103339(n): return (lambda x, y: y*n//gcd(x,y*n))(udivisor_sigma(n),udivisor_sigma(n,0)) # Chai Wah Wu, Oct 20 2021
    

Formula

a(A006086(n)) = A006087(n). - Reinhard Zumkeller, Mar 17 2012
From Amiram Eldar, Mar 10 2023: (Start)
a(n)/A103340(n) = n*A034444(n)/A034448(n).
a(n)/A103340(n) <= A099377(n)/A099378(n), with equality if and only if n is squarefree (A005117). (End)

A361316 Numerators of the harmonic means of the infinitary divisors of the positive integers.

Original entry on oeis.org

1, 4, 3, 8, 5, 2, 7, 32, 9, 20, 11, 12, 13, 7, 5, 32, 17, 12, 19, 8, 21, 22, 23, 16, 25, 52, 27, 14, 29, 10, 31, 128, 11, 68, 35, 72, 37, 38, 39, 32, 41, 7, 43, 44, 3, 23, 47, 48, 49, 100, 17, 104, 53, 18, 55, 56, 57, 116, 59, 4, 61, 31, 63, 256, 65, 11, 67, 136
Offset: 1

Views

Author

Amiram Eldar, Mar 09 2023

Keywords

Examples

			Fractions begin with 1, 4/3, 3/2, 8/5, 5/3, 2, 7/4, 32/15, 9/5, 20/9, 11/6, 12/5, ...
		

Crossrefs

Similar sequences: A099377, A103339.

Programs

  • Mathematica
    f[p_, e_] := Module[{b = IntegerDigits[e, 2], m}, m = Length[b]; Product[If[b[[j]] > 0, 2/(1 + p^(2^(m - j))), 1], {j, 1, m}]]; a[1] = 1; a[n_] := Numerator[n * Times @@ f @@@ FactorInteger[n]]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n), b); numerator(n * prod(i=1, #f~, b = binary(f[i, 2]); prod(k=1, #b, if(b[k], 2/(f[i, 1]^(2^(#b-k))+1), 1)))); }

Formula

a(n) = numerator(n*A037445(n)/A049417(n)).
a(n)/A361317(n) <= A099377(n)/A099378(n), with equality if and only if n is in A036537.
a(n)/A361317(n) >= A103339(n)/A103340(n), with equality if and only if n is in A138302.

A361317 Denominators of the harmonic means of the infinitary divisors of the positive integers.

Original entry on oeis.org

1, 3, 2, 5, 3, 1, 4, 15, 5, 9, 6, 5, 7, 3, 2, 17, 9, 5, 10, 3, 8, 9, 12, 5, 13, 21, 10, 5, 15, 3, 16, 51, 4, 27, 12, 25, 19, 15, 14, 9, 21, 2, 22, 15, 1, 9, 24, 17, 25, 39, 6, 35, 27, 5, 18, 15, 20, 45, 30, 1, 31, 12, 20, 85, 21, 3, 34, 45, 8, 9, 36, 25, 37, 57
Offset: 1

Views

Author

Amiram Eldar, Mar 09 2023

Keywords

Crossrefs

Cf. A037445, A049417, A077609, A063947 (positions of 1's), A361316 (numerators).
Similar sequences: A099378, A103340.

Programs

  • Mathematica
    f[p_, e_] := Module[{b = IntegerDigits[e, 2], m}, m = Length[b]; Product[If[b[[j]] > 0, 2/(1 + p^(2^(m - j))), 1], {j, 1, m}]]; a[1] = 1; a[n_] := Denominator[n * Times @@ f @@@ FactorInteger[n]]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n), b); denominator(n * prod(i=1, #f~, b = binary(f[i, 2]); prod(k=1, #b, if(b[k], 2/(f[i, 1]^(2^(#b-k))+1), 1)))); }

Formula

a(n) = denominator(n*A037445(n)/A049417(n)).

A361783 Denominators of the harmonic means of the bi-unitary divisors of the positive integers.

Original entry on oeis.org

1, 3, 2, 5, 3, 1, 4, 15, 5, 9, 6, 5, 7, 3, 2, 27, 9, 5, 10, 3, 8, 9, 12, 5, 13, 21, 10, 5, 15, 3, 16, 21, 4, 27, 12, 25, 19, 15, 14, 9, 21, 2, 22, 15, 1, 9, 24, 9, 25, 39, 6, 35, 27, 5, 18, 15, 20, 45, 30, 1, 31, 12, 20, 119, 21, 3, 34, 45, 8, 9, 36, 25, 37, 57
Offset: 1

Views

Author

Amiram Eldar, Mar 24 2023

Keywords

Crossrefs

Cf. A188999, A222266, A286324, A286325 (positions of 1's), A361782 (numerators).
Similar sequences: A099378, A103340, A361317.

Programs

  • Mathematica
    f[p_, e_] := p^e * If[OddQ[e], (e + 1)*(p - 1)/(p^(e + 1) - 1), e/((p^(e + 1) - 1)/(p - 1) - p^(e/2))]; a[1] = 1; a[n_] := Denominator[Times @@ f @@@ FactorInteger[n]]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n), p, e); denominator(n * prod(i = 1, #f~, p = f[i, 1]; e = f[i, 2];  if(e%2, (e + 1)*(p - 1)/(p^(e + 1) - 1), e/((p^(e + 1) - 1)/(p - 1) - p^(e/2))))); }

Formula

a(n) = denominator(n*A286324(n)/A188999(n)).

A353692 a(n) is the least number k > n such that uh(k)/uh(n) is an integer, where uh(n) is the harmonic mean of the unitary divisors of n, or -1 if no such k exists.

Original entry on oeis.org

6, 20, 45, 72, 30, 60, 42, 272, 756, 120, 66, 18, 78, 140, 1890, 720, 102, 180, 114, 24, 315, 220, 138, 360, 150, 260, 3321, 504, 174, 7560, 186, 1440, 495, 340, 210, 52416, 222, 380, 585, 1360, 246, 420, 258, 792, 1512, 460, 282, 720, 294, 600, 765, 936, 318
Offset: 1

Views

Author

Amiram Eldar, May 04 2022

Keywords

Examples

			a(2) = 20 since 20 is the least number > 2 such that uh(20)/uh(2) = (8/3)/(4/3) = 2 is an integer.
		

Crossrefs

Similar sequences: A069789, A069797, A069805, A353691.

Programs

  • Mathematica
    uh[n_] := Module[{f = FactorInteger[n]}, n*2^Length[f]/Times @@ (1 + Power @@@ f)]; a[n_] := Module[{k = n + 1, uhn = uh[n]}, While[!IntegerQ[uh[k]/uhn], k++]; k]; Array[a, 30]

Formula

a(p) = 6*p for a prime p > 3.

A348656 Numbers with record values of the denominator of the harmonic mean of their unitary divisors.

Original entry on oeis.org

1, 2, 4, 8, 16, 26, 32, 50, 58, 64, 98, 106, 122, 128, 178, 194, 202, 218, 226, 242, 250, 256, 346, 362, 386, 394, 458, 466, 482, 512, 698, 706, 722, 746, 778, 794, 802, 818, 842, 866, 898, 914, 922, 1018, 1024, 1402, 1418, 1466, 1514, 1522, 1538, 1546, 1594, 1618
Offset: 1

Views

Author

Amiram Eldar, Oct 28 2021

Keywords

Comments

The corresponding record values are 1, 3, 5, 9, 17, 21, 33, 39, 45, 65, 75, ... (see the link for more values).

Examples

			The first 8 terms of A103340 are 1, 3, 2, 5, 3, 1, 4 and 9. The record values, 1, 3, 5 and 9, occur at 1, 2, 4 and 8, the first 4 terms of this sequence.
		

Crossrefs

The unitary version of A348414.

Programs

  • Mathematica
    f[p_, e_] := 2/(1 + p^(-e)); d[n_] := Denominator[Times @@ f @@@ FactorInteger[n]]; dm = 0; s = {}; Do[dn = d[n]; If[dn > dm, dm = dn; AppendTo[s, n]], {n, 1, 1000}]; s

A348657 Numbers k such that k and k+1 have the same denominator of the harmonic means of their unitary divisors.

Original entry on oeis.org

266, 321, 1015, 2544, 4004, 4277, 5016, 15861, 28461, 47613, 63546, 135078, 137333, 203709, 207024, 265489, 344217, 383466, 517610, 603687, 787156, 798625, 876469, 1100835, 1713865, 2062863, 2246923, 2349390, 2666741, 3013830, 3961129, 5048409, 6148960, 6491717
Offset: 1

Views

Author

Amiram Eldar, Oct 28 2021

Keywords

Comments

Numbers k such that A103340(k) = A103340(k+1).
The common denominators of k and k+1 are 30, 36, 36, 153, 15, 96, 45, 936, ...
Can 3 consecutive numbers have the same denominator of harmonic mean of unitary divisors? There are no such numbers below 2.5*10^10.

Examples

			266 is a term since the harmonic means of the unitary divisors of 266 and 267 are 133/30 and 89/30, respectively, and both have the denominator 30.
		

Crossrefs

The unitary version of A348415.

Programs

  • Mathematica
    f[p_, e_] := 2/(1 + p^(-e)); d[n_] := Denominator[Times @@ f @@@ FactorInteger[n]]; Select[Range[10^5], d[#] == d[# + 1] &]
Showing 1-9 of 9 results.