A103341 Numbers k such that floor(k*sqrt(2)) is a power of 2.
1, 2, 3, 6, 12, 23, 91, 2897, 5793, 23171, 46341, 92682, 185364, 370728, 1482911, 2965821, 5931642, 23726567, 47453133, 94906266, 379625063, 759250125, 1518500250, 3037000500, 6074001000, 12148002000, 24296004000, 48592008000
Offset: 1
Keywords
References
- Jean-Marie De Koninck and Armel Mercier, 1001 problèmes en théorie classique des nombres, ellipses, 2004, pp. 117, 374-375.
Links
- Robert Israel, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A001951 (floor(n*sqrt(2))).
Programs
-
Magma
[n: n in [1..2*10^7] | 2^Ilog(2, s) eq s where s is Floor(n*Sqrt(2))]; // Vincenzo Librandi, Nov 06 2018
-
Maple
N:= 100: # to get a(1)..a(N) count:= 0: for k from 0 while count < N do a:= ceil(2^(k-1)*sqrt(2)); b:= floor((2^(k-1)+1/2)*sqrt(2)); if a=b then count:= count+1; A[count]:= a; fi od: seq(A[n],n=1..N); # Robert Israel, Jul 19 2016
-
Mathematica
f[k_] := Reduce[n > 0 && (2^k)^2<= 2*n^2 < (2^k + 1)^2, n, Integers]; n /. ToRules /@ Select[Table[f[k], {k, 0, 40}], # =!= False & ] (* Jean-François Alcover, Sep 13 2011 *)
-
PARI
for(k=0,50,n=ceil(2^k/sqrt(2));if(floor(n*sqrt(2))==2^k,print1(n,","))) \\ Robert Gerbicz, Jun 09 2007
-
PARI
isok(n) = my(b=sqrtint(2*n^2)); (b==1) || (b==2) || (isprimepower(b, &p) && (p==2)); \\ Michel Marcus, Mar 12 2019
Extensions
More terms from Robert Gerbicz, Jun 09 2007
Comments