cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103341 Numbers k such that floor(k*sqrt(2)) is a power of 2.

Original entry on oeis.org

1, 2, 3, 6, 12, 23, 91, 2897, 5793, 23171, 46341, 92682, 185364, 370728, 1482911, 2965821, 5931642, 23726567, 47453133, 94906266, 379625063, 759250125, 1518500250, 3037000500, 6074001000, 12148002000, 24296004000, 48592008000
Offset: 1

Views

Author

Benoit Cloitre, May 13 2007

Keywords

Comments

Sequence is infinite.
If floor(sqrt(2)*2^k) + 1 < sqrt(2)*2^k + sqrt(2)/2, then floor(sqrt(2)*2^k) + 1 is in this sequence. - Jinyuan Wang, Nov 04 2018

References

  • Jean-Marie De Koninck and Armel Mercier, 1001 problèmes en théorie classique des nombres, ellipses, 2004, pp. 117, 374-375.

Crossrefs

Cf. A001951 (floor(n*sqrt(2))).

Programs

  • Magma
    [n: n in [1..2*10^7] | 2^Ilog(2, s) eq s where s is Floor(n*Sqrt(2))]; // Vincenzo Librandi, Nov 06 2018
  • Maple
    N:= 100: # to get a(1)..a(N)
    count:= 0:
    for k from 0 while count < N do
      a:= ceil(2^(k-1)*sqrt(2));
      b:= floor((2^(k-1)+1/2)*sqrt(2));
      if a=b then
         count:= count+1;
         A[count]:= a;
      fi
    od:
    seq(A[n],n=1..N); # Robert Israel, Jul 19 2016
  • Mathematica
    f[k_] := Reduce[n > 0 && (2^k)^2<= 2*n^2 <  (2^k + 1)^2, n, Integers]; n /. ToRules /@ Select[Table[f[k], {k, 0, 40}], # =!= False & ] (* Jean-François Alcover, Sep 13 2011 *)
  • PARI
    for(k=0,50,n=ceil(2^k/sqrt(2));if(floor(n*sqrt(2))==2^k,print1(n,","))) \\ Robert Gerbicz, Jun 09 2007
    
  • PARI
    isok(n) = my(b=sqrtint(2*n^2)); (b==1) || (b==2) || (isprimepower(b, &p) && (p==2)); \\ Michel Marcus, Mar 12 2019
    

Extensions

More terms from Robert Gerbicz, Jun 09 2007