cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A004514 Generalized nim sum n + n in base 4.

Original entry on oeis.org

0, 2, 0, 2, 8, 10, 8, 10, 0, 2, 0, 2, 8, 10, 8, 10, 32, 34, 32, 34, 40, 42, 40, 42, 32, 34, 32, 34, 40, 42, 40, 42, 0, 2, 0, 2, 8, 10, 8, 10, 0, 2, 0, 2, 8, 10, 8, 10, 32, 34, 32, 34, 40, 42, 40, 42, 32, 34, 32, 34, 40, 42, 40, 42, 128, 130, 128, 130, 136, 138, 136, 138, 128
Offset: 0

Views

Author

Keywords

Comments

In the base 4 expansion of 2*n + 1, change 1 to 0 and 3 to 2. - Paolo Xausa, Feb 27 2025

Crossrefs

Programs

Formula

Generalized nim sum m + n in base q: write m and n in base q and add mod q with no carries, e.g., 5 + 8 in base 3 = "21" + "22" = "10" = 1.
From Vladeta Jovovic, Feb 23 2003: (Start)
a(n) = 2*(n - a(floor(n/2))).
a(n) = 2*A063694(n). (End)
a(n) = A088442(n) - 1. - Chris Groer (cgroer(AT)math.uga.edu), Nov 10 2003
a(n) = n + A053985(n). - Reinhard Zumkeller, Dec 27 2003
a(n) = A063695(2*n+1). - Reinhard Zumkeller, Sep 26 2015
a(n) = Sum_{k>=0} A030308(n,k)*A103424(k+1). - Philippe Deléham, Jan 12 2023

Extensions

More terms from Reinhard Zumkeller, Dec 27 2003

A199573 Number of round trips of length n from any of the four vertices of the cycle graph C_4.

Original entry on oeis.org

1, 0, 2, 0, 8, 0, 32, 0, 128, 0, 512, 0, 2048, 0, 8192, 0, 32768, 0, 131072, 0, 524288, 0, 2097152, 0, 8388608, 0, 33554432, 0, 134217728, 0, 536870912, 0, 2147483648, 0, 8589934592, 0, 34359738368, 0, 137438953472, 0
Offset: 0

Views

Author

Wolfdieter Lang, Nov 08 2011

Keywords

Comments

See the array w(N,L) and the triangle a(K,N) given in A199571.
Essentially the same as A103424.
This is A081294 and A000004 interleaved. - Omar E. Pol, Nov 09 2011

Examples

			a(4)=8 from the eight round trips of length 4 (starting from, say, vertex no. 1): 12121, 14141, 12141, 14121, 12321, 14341, 12341 and 14321.
		

Crossrefs

Cf. A078008 (N=3), A054877 (N=5), A199571.

Programs

  • Mathematica
    CoefficientList[Series[(1 - 2 x^2)/(1 - (2 x)^2), {x, 0, 40}], x] (* or *) Riffle[Join[{1},NestList[4#&,2,20]],0] (* or *) LinearRecurrence[ {0,4},{1,0,2},80] (* Harvey P. Dale, Dec 04 2015 *)

Formula

a(n) = 2^(n-2)*(1+(-1)^n), n>=2, a(0)=1.
O.g.f.: (1-2*x^2)/(1-(2*x)^2).
E.g.f.: 1+(1 + 2*x^2/(U(0) - 2*x^2 + 1))*x^2 where U(k)= 4*k+5 + 2*x^2/(1 + (2*k+3)*(k+2)/U(k+1)) ; (continued fraction, 3rd kind, 2-step). - Sergei N. Gladkovskii, Oct 28 2012

A103425 a(n) = 3*a(n-1) + a(n-2) - 3*a(n-3).

Original entry on oeis.org

1, 3, 5, 15, 41, 123, 365, 1095, 3281, 9843, 29525, 88575, 265721, 797163, 2391485, 7174455, 21523361, 64570083, 193710245, 581130735, 1743392201, 5230176603, 15690529805, 47071589415, 141214768241, 423644304723, 1270932914165
Offset: 0

Views

Author

Paul Barry, Feb 05 2005

Keywords

Comments

Binomial transform of A103424.
This is a (3, 1, -3) weighted tribonacci sequence, cf. A102001. The current sequence contains primes, including 3, 5, 41, 21523361. Is there an (a, b, c) weighted tribonacci sequence with a, b, c relatively prime which is prime-free? The general linear third-order recurrence equation x(n) = a*x(n-1) + b*x(n-2) + c*x(n-3) has a solution in terms of roots of a cubic polynomial, see Weisstein. - Jonathan Vos Post, Feb 05 2005

Formula

G.f.: (1-5x^2)/((1-x^2)(1-3x)).
E.g.f.: exp(x)(1+sinh(2x)).
a(n) = 1 + (3^n - (-1)^n)/2.
Showing 1-3 of 3 results.