A103609 Fibonacci numbers repeated (cf. A000045).
0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 5, 5, 8, 8, 13, 13, 21, 21, 34, 34, 55, 55, 89, 89, 144, 144, 233, 233, 377, 377, 610, 610, 987, 987, 1597, 1597, 2584, 2584, 4181, 4181, 6765, 6765, 10946, 10946, 17711, 17711, 28657, 28657, 46368, 46368, 75025, 75025, 121393
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- N. J. A. Sloane, 2178 And All That, Fib. Quart., 52 (2014), 99-120.
- N. J. A. Sloane, 2178 And All That [Local copy]
- I. Wloch, U. Bednarz, D. BrĂ³d, A Wloch and M. Wolowiec-Musial, On a new type of distance Fibonacci numbers, Discrete Applied Math., Volume 161, Issues 16-17, November 2013, Pages 2695-2701.
- Index entries for linear recurrences with constant coefficients, signature (0,1,0,1).
Programs
-
Magma
[Fibonacci(Floor(n/2)): n in [0..60]]; // G. C. Greubel, Oct 22 2024
-
Maple
A103609 := proc(n): combinat[fibonacci](floor(n/2)) ; end proc: seq(A103609(n), n=0..52); # Johannes W. Meijer, Aug 16 2011
-
Mathematica
a[0] = 0; a[1] = 0; a[2] = 1; a[3] = 1; a[n_Integer?Positive] := a[n] = a[n - 2] + a[n - 4]; aa = Table[a[n], {n, 0, 200}] Join[{0, 0}, LinearRecurrence[{0, 1, 0, 1}, {1, 1, 1, 1}, 60]] (* Vincenzo Librandi, Jan 19 2016 *) With[{fibs=Fibonacci[Range[0,30]]},Riffle[fibs,fibs]] (* Harvey P. Dale, Jul 11 2025 *)
-
PARI
a(n)=fibonacci(n\2) \\ Charles R Greathouse IV, Oct 07 2015
-
PARI
my(x='x+O('x^50)); Vec(x^2*(1+x)/(1-x^2-x^4)) \\ G. C. Greubel, May 01 2017
-
SageMath
[fibonacci(n//2) for n in range(61)] # G. C. Greubel, Oct 22 2024
Formula
a(n) = a(n-2) + a(n-4).
G.f.: x^2*(1+x)/(1-x^2-x^4). - R. J. Mathar, Sep 27 2008
a(n) = A000045(floor(n/2)). - Johannes W. Meijer, Aug 16 2011
Extensions
Edited by N. J. A. Sloane, Dec 01 2006
Incorrect formula deleted by Johannes W. Meijer, Aug 16 2011
Comments