cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103609 Fibonacci numbers repeated (cf. A000045).

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 5, 5, 8, 8, 13, 13, 21, 21, 34, 34, 55, 55, 89, 89, 144, 144, 233, 233, 377, 377, 610, 610, 987, 987, 1597, 1597, 2584, 2584, 4181, 4181, 6765, 6765, 10946, 10946, 17711, 17711, 28657, 28657, 46368, 46368, 75025, 75025, 121393
Offset: 0

Views

Author

Roger L. Bagula, Mar 24 2005

Keywords

Comments

The usual policy in the OEIS is not to include such "doubled" sequences. This is an exception. - N. J. A. Sloane
The Gi2 sums, see A180662, of triangle A065941 equal the terms of this sequence without the two leading zeros. - Johannes W. Meijer, Aug 16 2011

Crossrefs

Partial sums: A094707.

Programs

  • Magma
    [Fibonacci(Floor(n/2)): n in [0..60]]; // G. C. Greubel, Oct 22 2024
    
  • Maple
    A103609 := proc(n): combinat[fibonacci](floor(n/2)) ; end proc: seq(A103609(n), n=0..52); # Johannes W. Meijer, Aug 16 2011
  • Mathematica
    a[0] = 0; a[1] = 0; a[2] = 1; a[3] = 1; a[n_Integer?Positive] := a[n] = a[n - 2] + a[n - 4]; aa = Table[a[n], {n, 0, 200}]
    Join[{0, 0}, LinearRecurrence[{0, 1, 0, 1}, {1, 1, 1, 1}, 60]] (* Vincenzo Librandi, Jan 19 2016 *)
    With[{fibs=Fibonacci[Range[0,30]]},Riffle[fibs,fibs]] (* Harvey P. Dale, Jul 11 2025 *)
  • PARI
    a(n)=fibonacci(n\2) \\ Charles R Greathouse IV, Oct 07 2015
    
  • PARI
    my(x='x+O('x^50)); Vec(x^2*(1+x)/(1-x^2-x^4)) \\ G. C. Greubel, May 01 2017
    
  • SageMath
    [fibonacci(n//2) for n in range(61)] # G. C. Greubel, Oct 22 2024

Formula

a(n) = a(n-2) + a(n-4).
G.f.: x^2*(1+x)/(1-x^2-x^4). - R. J. Mathar, Sep 27 2008
a(n) = A000045(floor(n/2)). - Johannes W. Meijer, Aug 16 2011

Extensions

Edited by N. J. A. Sloane, Dec 01 2006
Incorrect formula deleted by Johannes W. Meijer, Aug 16 2011