A103806 Primes p such that 2p - 33 and 2p + 33 are both primes.
2, 5, 7, 13, 19, 23, 37, 47, 53, 67, 73, 103, 137, 157, 163, 173, 193, 227, 233, 277, 313, 347, 353, 397, 443, 457, 613, 733, 863, 877, 983, 1087, 1153, 1213, 1327, 1447, 1493, 1733, 1747, 1787, 1867, 2053, 2063, 2153, 2237, 2377, 2383, 2503, 2557, 2657, 2683
Offset: 1
Keywords
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Magma
[p: p in PrimesUpTo(3000)| IsPrime(2*p+33) and IsPrime(2*p-33) ]; // Vincenzo Librandi, Jan 28 2011
-
Mathematica
Select[Range[2000], PrimeQ[ # ] && PrimeQ[2# + 33] && PrimeQ[2# - 33] &] Select[Prime[Range[400]],AllTrue[2#+{33,-33},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Sep 10 2016 *)
Formula
p, 2p-33 and 2p+33 all are primes.
Comments