cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A103890 a(n) = prime(n)! / prime(n)# + 1.

Original entry on oeis.org

2, 2, 5, 25, 17281, 207361, 696729601, 12541132801, 115880067072001, 1366643159020339200001, 40999294770610176000001, 1854768736099424576471040000001, 109950690675973888893203251200000001, 4617929008390903333514536550400000001
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 20 2005

Keywords

Crossrefs

Programs

  • Mathematica
    #[[1]]/#[[2]]&/@With[{nn=15},Thread[{Prime[Range[nn]]!,FoldList[ Times,Prime[ Range[nn]]]}]]+1 (* Harvey P. Dale, May 21 2019 *)
  • PARI
    a(n) = prime(n)!/vecprod(primes(n)) + 1; \\ Michel Marcus, Nov 12 2023

Formula

a(n) = A039716(n)/A002110(n) + 1 = A092435(n) + 1.

A103860 Sum of divisors of prime(n)! - prime(n)# + 1.

Original entry on oeis.org

1, 1, 112, 4832, 39929032, 6227388000, 355687500698712, 121674349040732800, 26204303786955547121568, 8844022735747817449795273936944, 8243360285859647409507002537385024, 13989390090648918627329493090109449081402880, 33452526614068666040537953433982904696696861440000
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 20 2005

Keywords

Crossrefs

Programs

  • Mathematica
    Module[{nn=15,pr,pm},pr=Prime[Range[nn]]!;pm=FoldList[Times,Prime[Range[nn]]];DivisorSigma[1,#[[1]]-#[[2]]+1&/@Thread[{pr,pm}]]] (* Harvey P. Dale, Dec 18 2022 *)
  • PARI
    a(n) = sigma(prime(n)! - factorback(primes(n)) + 1); \\ Jinyuan Wang, Dec 28 2024

Formula

a(n) = A000203(A103855(n)).

A103894 Number of divisors of prime(n)! / prime(n)# + 1.

Original entry on oeis.org

2, 2, 2, 3, 4, 8, 8, 16, 4, 8, 4, 16, 16, 32, 8, 4, 8, 16, 64, 32, 32, 32, 32, 64, 32, 16, 32, 8, 128, 32
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 20 2005

Keywords

Crossrefs

Formula

a(n) = A000005(A103890(n)).

Extensions

a(28)-a(30) from Amiram Eldar, Feb 13 2020
Showing 1-3 of 3 results.