cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A103855 a(n) = prime(n)! - prime(n)# + 1.

Original entry on oeis.org

1, 1, 91, 4831, 39914491, 6226990771, 355687427585491, 121645100399132311, 25852016738884753547131, 8841761993739701954537146306771, 8222838654177922817725362319509871, 13763753091226345046315979581573481661865191, 33452526613163807108170062053440751360901736472791
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 20 2005

Keywords

Crossrefs

Programs

  • Mathematica
    primorial[n_] := Product[Prime[i], {i, n}]; A103855[n_] := Prime[n]! - primorial[n] + 1; Array[A103855, 20] (* G. C. Greubel, May 09 2017 *)
    With[{nn=15},#[[1]]-#[[2]]+1&/@Thread[{Prime[Range[nn]]!,FoldList[Times,Prime[Range[nn]]]}]] (* Harvey P. Dale, Aug 11 2025 *)

Formula

a(n) = A039716(n) - A002110(n) + 1 = A002110(n) * (A092435(n) - 1) + 1.

A103892 Greatest prime factor of prime(n)! / prime(n)# + 1.

Original entry on oeis.org

2, 2, 5, 5, 1571, 2693, 15427, 27749, 4154449757, 151585363459003, 73899633146196133, 24770877398207, 1429176066859677377, 7748318379505746557, 21662673895172922098651, 447620901583917369406703727865417431168683, 26823894708473887265117477378744683922119
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 20 2005

Keywords

Crossrefs

Formula

a(n) = A006530(A103890(n)).

A103895 Sum of divisors of prime(n)! / prime(n)# + 1.

Original entry on oeis.org

3, 3, 6, 31, 18864, 258624, 733755680, 13213440000, 115884221549652, 1372805558801047105280, 40999368670243322750932, 1855053929165456908669711085568, 113895178720398409713058206857404800, 4701294182073054820056713442085236768
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 20 2005

Keywords

Crossrefs

Formula

a(n) = A000203(A103890(n)).

A103891 Smallest prime factor of prime(n)! / prime(n)# + 1.

Original entry on oeis.org

2, 2, 5, 5, 11, 7, 19, 31, 27893, 223, 554797, 10333, 29, 61, 28652131, 293049347, 7731517, 1483, 73, 337809273983, 67, 440939, 1321, 94099, 89, 107, 281, 1908113757161297657, 479, 61, 167, 3121, 177907, 5039, 11519, 281, 612153149, 587, 2753, 21491, 2897, 97, 307
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 20 2005

Keywords

Crossrefs

Formula

a(n) = A020639(A103890(n)).

Extensions

a(28)-a(30) from Amiram Eldar, Feb 13 2020
More terms from Jinyuan Wang, Apr 16 2020

A103894 Number of divisors of prime(n)! / prime(n)# + 1.

Original entry on oeis.org

2, 2, 2, 3, 4, 8, 8, 16, 4, 8, 4, 16, 16, 32, 8, 4, 8, 16, 64, 32, 32, 32, 32, 64, 32, 16, 32, 8, 128, 32
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 20 2005

Keywords

Crossrefs

Formula

a(n) = A000005(A103890(n)).

Extensions

a(28)-a(30) from Amiram Eldar, Feb 13 2020

A103896 Euler's totient of prime(n)! / prime(n)# + 1.

Original entry on oeis.org

1, 1, 4, 20, 15700, 161520, 659739168, 11887243200, 115875912594352, 1360481062410358294032, 40999220870977029249072, 1854483563489396099991763032000, 106016408292727234808287504322403328, 4534810991759912394035394805790730240
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 20 2005

Keywords

Crossrefs

Formula

a(n) = A000010(A103890(n)).

A103893 Number of distinct prime factors of prime(n)! / prime(n)# + 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 3, 4, 2, 3, 2, 4, 4, 5, 3, 2, 3, 4, 6, 5, 5, 5, 5, 6, 5, 4, 5, 3, 7, 5, 5, 8, 5
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 20 2005

Keywords

Comments

Also the number of distinct prime factors of the P_n-th compositorial.
a(31) > 4 and its composite part is a 155-digit number.
a(34) >= 4. - Amiram Eldar, Jan 21 2024

Crossrefs

Programs

  • Mathematica
    bigomega[n_Integer] := Plus @@ Last /@ FactorInteger[n]; f[n_] := Prime[n]!/Product[Prime[i], {i, n}] + 1; Table[ f[n], {n, 27}] (* Robert G. Wilson v, Mar 11 2005 *)

Formula

a(n) = A001221(A103890(n)).

Extensions

Corrected and extended by Robert G. Wilson v, Mar 12 2005
a(31)-a(33) using factordb.com added by Amiram Eldar, Jan 21 2024
Showing 1-7 of 7 results.