cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A103890 a(n) = prime(n)! / prime(n)# + 1.

Original entry on oeis.org

2, 2, 5, 25, 17281, 207361, 696729601, 12541132801, 115880067072001, 1366643159020339200001, 40999294770610176000001, 1854768736099424576471040000001, 109950690675973888893203251200000001, 4617929008390903333514536550400000001
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 20 2005

Keywords

Crossrefs

Programs

  • Mathematica
    #[[1]]/#[[2]]&/@With[{nn=15},Thread[{Prime[Range[nn]]!,FoldList[ Times,Prime[ Range[nn]]]}]]+1 (* Harvey P. Dale, May 21 2019 *)
  • PARI
    a(n) = prime(n)!/vecprod(primes(n)) + 1; \\ Michel Marcus, Nov 12 2023

Formula

a(n) = A039716(n)/A002110(n) + 1 = A092435(n) + 1.

A103856 Smallest prime factor of prime(n)! - prime(n)# + 1.

Original entry on oeis.org

1, 1, 7, 4831, 3673, 16349, 5240507, 4159, 83, 3911, 401, 61, 66935021479, 199, 73, 152249, 379, 5014363, 181, 191, 277, 155893, 35851, 431, 1499
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 20 2005

Keywords

Comments

a(26) has 160 digits and is too large to be included here.

Crossrefs

Programs

  • PARI
    a(n) = if(n>2, factor(prime(n)!-factorback(primes(n))+1)[1, 1], 1); \\ Jinyuan Wang, Dec 30 2024

Formula

a(n) = A020639(A103855(n)).

A103857 Greatest prime factor of prime(n)! - prime(n)# + 1.

Original entry on oeis.org

1, 1, 13, 4831, 10867, 380879, 67872713, 29248641596329, 5375659901, 2260742008115495258127626261, 39302553278734052383226897, 2202226772995090243, 363934772650919, 125129894757902719183, 1330939456978870860802004244587
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 20 2005

Keywords

Crossrefs

Formula

a(n) = A006530(A103855(n)).

A103858 Number of distinct prime factors of prime(n)! - prime(n)# + 1.

Original entry on oeis.org

0, 0, 2, 1, 2, 2, 2, 2, 4, 2, 3, 4, 4, 5, 5, 3, 5, 3, 4, 6, 5, 4, 5, 6, 9, 1, 4
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 20 2005

Keywords

Comments

a(27) >= 4. - Amiram Eldar, Jan 21 2024

Crossrefs

Programs

  • Mathematica
    primorial[n_] := Product[Prime[i], {i, n}]; A103855[n_] := Prime[n]! - primorial[n] + 1;  PrimeNu[Array[A103855, 20]] (* G. C. Greubel, May 09 2017 *)
  • PARI
    a(n) = omega(prime(n)! - prod(k=1, n, prime(k)) + 1); \\ Michel Marcus, Nov 06 2022

Formula

a(n) = A001221(A103855(n)).

Extensions

a(27) from Jinyuan Wang, Jun 19 2025

A103859 Number of divisors of prime(n)! - prime(n)# + 1.

Original entry on oeis.org

1, 1, 4, 2, 4, 4, 4, 4, 16, 4, 8, 16, 16, 32, 32, 8, 32, 8, 16, 64, 32, 16, 32, 64, 512, 2, 16
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 20 2005

Keywords

Crossrefs

Programs

  • PARI
    a(n) = numdiv(prime(n)! - prod(k=1, n, prime(k)) + 1); \\ Michel Marcus, Nov 06 2022

Formula

a(n) = A000005(A103855(n)).

Extensions

a(27) from Jinyuan Wang, Jun 19 2025

A103860 Sum of divisors of prime(n)! - prime(n)# + 1.

Original entry on oeis.org

1, 1, 112, 4832, 39929032, 6227388000, 355687500698712, 121674349040732800, 26204303786955547121568, 8844022735747817449795273936944, 8243360285859647409507002537385024, 13989390090648918627329493090109449081402880, 33452526614068666040537953433982904696696861440000
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 20 2005

Keywords

Crossrefs

Programs

  • Mathematica
    Module[{nn=15,pr,pm},pr=Prime[Range[nn]]!;pm=FoldList[Times,Prime[Range[nn]]];DivisorSigma[1,#[[1]]-#[[2]]+1&/@Thread[{pr,pm}]]] (* Harvey P. Dale, Dec 18 2022 *)
  • PARI
    a(n) = sigma(prime(n)! - factorback(primes(n)) + 1); \\ Jinyuan Wang, Dec 28 2024

Formula

a(n) = A000203(A103855(n)).

A103861 Euler's totient of prime(n)! - prime(n)# + 1.

Original entry on oeis.org

1, 1, 72, 4830, 39899952, 6226593544, 355687354472272, 121615851757531824, 25500701524255140352000, 8839501251731586459279018676600, 8202317101101304783411826869132800, 13538116146734258320615004890482768163319520, 33452526612258948175814325380737291579993833222336
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 20 2005

Keywords

Crossrefs

Programs

  • Mathematica
    EulerPhi[Table[Prime[n]! - Product[Prime[i], {i, 1, n}] + 1, {n, 1, 10}]] (* Amiram Eldar, Feb 21 2020 *)

Formula

a(n) = A000010(A103855(n)).
Showing 1-7 of 7 results.