cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A103855 a(n) = prime(n)! - prime(n)# + 1.

Original entry on oeis.org

1, 1, 91, 4831, 39914491, 6226990771, 355687427585491, 121645100399132311, 25852016738884753547131, 8841761993739701954537146306771, 8222838654177922817725362319509871, 13763753091226345046315979581573481661865191, 33452526613163807108170062053440751360901736472791
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 20 2005

Keywords

Crossrefs

Programs

  • Mathematica
    primorial[n_] := Product[Prime[i], {i, n}]; A103855[n_] := Prime[n]! - primorial[n] + 1; Array[A103855, 20] (* G. C. Greubel, May 09 2017 *)
    With[{nn=15},#[[1]]-#[[2]]+1&/@Thread[{Prime[Range[nn]]!,FoldList[Times,Prime[Range[nn]]]}]] (* Harvey P. Dale, Aug 11 2025 *)

Formula

a(n) = A039716(n) - A002110(n) + 1 = A002110(n) * (A092435(n) - 1) + 1.

A103859 Number of divisors of prime(n)! - prime(n)# + 1.

Original entry on oeis.org

1, 1, 4, 2, 4, 4, 4, 4, 16, 4, 8, 16, 16, 32, 32, 8, 32, 8, 16, 64, 32, 16, 32, 64, 512, 2, 16
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 20 2005

Keywords

Crossrefs

Programs

  • PARI
    a(n) = numdiv(prime(n)! - prod(k=1, n, prime(k)) + 1); \\ Michel Marcus, Nov 06 2022

Formula

a(n) = A000005(A103855(n)).

Extensions

a(27) from Jinyuan Wang, Jun 19 2025

A103860 Sum of divisors of prime(n)! - prime(n)# + 1.

Original entry on oeis.org

1, 1, 112, 4832, 39929032, 6227388000, 355687500698712, 121674349040732800, 26204303786955547121568, 8844022735747817449795273936944, 8243360285859647409507002537385024, 13989390090648918627329493090109449081402880, 33452526614068666040537953433982904696696861440000
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 20 2005

Keywords

Crossrefs

Programs

  • Mathematica
    Module[{nn=15,pr,pm},pr=Prime[Range[nn]]!;pm=FoldList[Times,Prime[Range[nn]]];DivisorSigma[1,#[[1]]-#[[2]]+1&/@Thread[{pr,pm}]]] (* Harvey P. Dale, Dec 18 2022 *)
  • PARI
    a(n) = sigma(prime(n)! - factorback(primes(n)) + 1); \\ Jinyuan Wang, Dec 28 2024

Formula

a(n) = A000203(A103855(n)).

A103893 Number of distinct prime factors of prime(n)! / prime(n)# + 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 3, 4, 2, 3, 2, 4, 4, 5, 3, 2, 3, 4, 6, 5, 5, 5, 5, 6, 5, 4, 5, 3, 7, 5, 5, 8, 5
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 20 2005

Keywords

Comments

Also the number of distinct prime factors of the P_n-th compositorial.
a(31) > 4 and its composite part is a 155-digit number.
a(34) >= 4. - Amiram Eldar, Jan 21 2024

Crossrefs

Programs

  • Mathematica
    bigomega[n_Integer] := Plus @@ Last /@ FactorInteger[n]; f[n_] := Prime[n]!/Product[Prime[i], {i, n}] + 1; Table[ f[n], {n, 27}] (* Robert G. Wilson v, Mar 11 2005 *)

Formula

a(n) = A001221(A103890(n)).

Extensions

Corrected and extended by Robert G. Wilson v, Mar 12 2005
a(31)-a(33) using factordb.com added by Amiram Eldar, Jan 21 2024
Showing 1-4 of 4 results.