cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103897 a(n) = 3*2^(n-1)*(2^n-1).

Original entry on oeis.org

3, 18, 84, 360, 1488, 6048, 24384, 97920, 392448, 1571328, 6288384, 25159680, 100651008, 402628608, 1610563584, 6442352640, 25769607168, 103078821888, 412316073984, 1649265868800, 6597066620928, 26388272775168, 105553103683584, 422212439900160
Offset: 1

Views

Author

Zak Seidov, Mar 30 2005

Keywords

Comments

Divide the sequence of natural numbers: s0=1,2,3,4,5,6,7,8,9,10,11,12,13,14,... into sections s(n) of length 2*s1-1, where s1=initial digits of s(n): s={1,2},{3,4,5,6},{7,8,9,10,11,12,13,14},... then a(n)=sum of terms of s(n): 3,18,84,...
Sum of the numbers between 2^n and 2^(n+1), both excluded. - Gionata Neri, Jun 16 2015

Crossrefs

Cf. A006516.

Programs

  • Magma
    [3*2^(n-1)*(2^n-1): n in [1..24]];  // Bruno Berselli, Sep 19 2011
    
  • Mathematica
    Table[3*2^(n - 1)*(2^n - 1), {n, 30}]
    LinearRecurrence[{6,-8},{3,18},30] (* Harvey P. Dale, Feb 11 2018 *)
  • PARI
    a(n)=3*2^(n-1)*(2^n-1) \\ Charles R Greathouse IV, Jun 08 2015
    
  • Python
    b = list(range(0,2**20-1)); a = [sum(b[2**i-1:2**(i+1)-1]) for i in range(1,20)] ## Johan Claes, Nov 10 2019

Formula

a(n) = 3*A006516(n).
From Bruno Berselli, Sep 19 2011: (Start)
G.f.: 3*x/((1-2*x)*(1-4*x)).
a(n+2) = A061561(4n-2). (End)
E.g.f.: (3/2)*(exp(4*x) - exp(2*x)). - Stefano Spezia, Nov 10 2019