A103897 a(n) = 3*2^(n-1)*(2^n-1).
3, 18, 84, 360, 1488, 6048, 24384, 97920, 392448, 1571328, 6288384, 25159680, 100651008, 402628608, 1610563584, 6442352640, 25769607168, 103078821888, 412316073984, 1649265868800, 6597066620928, 26388272775168, 105553103683584, 422212439900160
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Paul Barry, On the Gap-sum and Gap-product Sequences of Integer Sequences, arXiv:2104.05593 [math.CO], 2021.
- Index entries for linear recurrences with constant coefficients, signature (6,-8).
Crossrefs
Cf. A006516.
Programs
-
Magma
[3*2^(n-1)*(2^n-1): n in [1..24]]; // Bruno Berselli, Sep 19 2011
-
Mathematica
Table[3*2^(n - 1)*(2^n - 1), {n, 30}] LinearRecurrence[{6,-8},{3,18},30] (* Harvey P. Dale, Feb 11 2018 *)
-
PARI
a(n)=3*2^(n-1)*(2^n-1) \\ Charles R Greathouse IV, Jun 08 2015
-
Python
b = list(range(0,2**20-1)); a = [sum(b[2**i-1:2**(i+1)-1]) for i in range(1,20)] ## Johan Claes, Nov 10 2019
Formula
a(n) = 3*A006516(n).
From Bruno Berselli, Sep 19 2011: (Start)
G.f.: 3*x/((1-2*x)*(1-4*x)).
a(n+2) = A061561(4n-2). (End)
E.g.f.: (3/2)*(exp(4*x) - exp(2*x)). - Stefano Spezia, Nov 10 2019
Comments