A076335
Brier numbers: numbers that are both Riesel and Sierpiński [Sierpinski], or odd n such that for all k >= 1 the numbers n*2^k + 1 and n*2^k - 1 are composite.
Original entry on oeis.org
3316923598096294713661, 10439679896374780276373, 11615103277955704975673, 12607110588854501953787, 17855036657007596110949, 21444598169181578466233, 28960674973436106391349, 32099522445515872473461, 32904995562220857573541
Offset: 1
- D. Baczkowski, J. Eitner, C. E. Finch, B. Suminski, and M. Kozek, Polygonal, Sierpinski, and Riesel numbers, Journal of Integer Sequences, 2015 Vol 18. #15.8.1.
- Chris Caldwell, The Prime Glossary, Riesel number
- Chris Caldwell, The Prime Glossary, Sierpinski number
- Christophe Clavier, 14 new Brier numbers
- Fred Cohen and J. L. Selfridge, Not every number is the sum or difference of two prime powers, Math. Comput. 29 (1975), pp. 79-81.
- P. Erdős, On integers of the form 2^k + p and some related problems, Summa Brasil. Math. 2 (1950), pp. 113-123.
- M. Filaseta et al., On Powers Associated with Sierpiński Numbers, Riesel Numbers and Polignac’s Conjecture, Journal of Number Theory, Volume 128, Issue 7, July 2008, Pages 1916-1940. (See pages 9-10)
- Michael Filaseta and Jacob Juillerat, Consecutive primes which are widely digitally delicate, arXiv:2101.08898 [math.NT], 2021.
- Michael Filaseta, Jacob Juillerat, and Thomas Luckner, Consecutive primes which are widely digitally delicate and Brier numbers, arXiv:2209.10646 [math.NT], 2022. See also Integers (2023) Vol. 23, #A75.
- Yves Gallot, A search for some small Brier numbers, 2000.
- G. L. Honaker, Jr. and Chris Caldwell, Prime Curios! 6992565235279559197457863
- Dan Ismailescu and Peter Seho Park, On Pairwise Intersections of the Fibonacci, Sierpiński, and Riesel Sequences, Journal of Integer Sequences, 16 (2013), #13.9.8.
- Joe McLean, Brier Numbers [Cached copy]
- Carlos Rivera, Problem 29. Brier numbers, The Prime Puzzles and Problems Connection.
- Carlos Rivera, Problem 58. Brier numbers revisited, The Prime Puzzles and Problems Connection.
- Carlos Rivera, Problem 68. More on Brier numbers, The Prime Puzzles and Problems Connection.
- Carlos Rivera, See here for latest information about progress on this sequence
- Eric Weisstein's World of Mathematics, Brier Number
Cf.
A194591,
A194600,
A194603,
A194606,
A194607,
A194608,
A194635,
A194636,
A194637,
A194638,
A194639,
A076336,
A076337,
A040081,
A040076,
A103963,
A103964,
A038699,
A050921,
A064699,
A052333,
A003261,
A364412,
A364413.
A234594 is the old, incorrect version.
Many terms reported in Problem 29 from "The Prime Problems & Puzzles Connection" from
Carlos Rivera, May 30 2010
A180247
Prime Brier numbers: primes p such that for all k >= 1 the numbers p*2^k + 1 and p*2^k - 1 are composite.
Original entry on oeis.org
10439679896374780276373, 21444598169181578466233, 105404490005793363299729, 178328409866851219182953, 239365215362656954573813, 378418904967987321998467, 422280395899865397194393, 474362792344501650476113, 490393518369132405769309
Offset: 1
- D. Baczkowski, J. Eitner, C. E. Finch, B. Suminski, and M. Kozek, Polygonal, Sierpinski, and Riesel numbers, Journal of Integer Sequences, 2015 Vol 18. #15.8.1.
- Chris Caldwell, The Prime Glossary, Riesel number
- Chris Caldwell, The Prime Glossary, Sierpinski number
- Christophe Clavier, 14 new Brier numbers
- Fred Cohen and J. L. Selfridge, Not every number is the sum or difference of two prime powers, Math. Comput. 29 (1975), pp. 79-81.
- P. Erdős, On integers of the form 2^k + p and some related problems, Summa Brasil. Math. 2 (1950), pp. 113-123.
- Yves Gallot, A search for some small Brier numbers, 2000.
- G. L. Honaker, Jr. and Chris Caldwell, Prime Curios! 6992565235279559197457863
- Dan Ismailescu and Peter Seho Park, On Pairwise Intersections of the Fibonacci, Sierpiński, and Riesel Sequences, Journal of Integer Sequences, 16 (2013), #13.9.8.
- Joe McLean, Brier Numbers [Cached copy]
- Carlos Rivera, Problem 52. ±p ± 2^n, The Prime Puzzles and Problems Connection.
- Eric Weisstein's World of Mathematics, Brier Number
Cf.
A194591,
A194600,
A194603,
A194606,
A194607,
A194608,
A194635,
A194636,
A194637,
A194638,
A194639,
A076336,
A076337,
A040081,
A040076,
A103963,
A103964,
A038699,
A050921,
A064699,
A052333,
A003261.
Original entry on oeis.org
0, 1, 2, 4, 5, 6, 11, 18, 20, 28, 70, 106, 208, 726, 910, 2906, 7431, 14073, 22394, 41422, 82587, 85461, 356981
Offset: 1
A194591(59) = 5 since A194591(109) = 6 is the next record value.
- Wilfrid Keller, personal communication, 2010.
-
l = -1; Flatten[Table[k = 0; While[! PrimeQ[n*2^k - 1] && ! PrimeQ[n*2^k + 1], k++]; If[k > l, l = k, {}], {n, 10^5}]] (* Arkadiusz Wesolowski, Sep 04 2011 *)
Original entry on oeis.org
0, 1, 2, 4, 5, 6, 11, 17, 20, 28, 70, 99, 150, 726, 7431, 22394, 85461, 191207
Offset: 1
A194606(53) = 11 since A194606(115) = 17 is the next record value.
- Wilfrid Keller, personal communication, 2010.
-
l = -1; Flatten[Table[p = Prime[n]; k = 0; While[! PrimeQ[p*2^k - 1] && ! PrimeQ[p*2^k + 1], k++]; If[k > l, l = k, {}], {n, 10^4}]] (* Arkadiusz Wesolowski, Sep 04 2011 *)
Original entry on oeis.org
0, 1, 2, 4, 5, 6, 11, 18, 20, 28, 70, 106, 150, 726, 2906, 7431, 14073, 22394, 41422, 82587, 85461, 356981
Offset: 1
A194636(55) = 6 since A194636(121) = 11 is the next record value.
- Wilfrid Keller, personal communication, 2010.
-
l = -1; Flatten[Table[n = 2*n - 1; k = 0; While[! PrimeQ[n*2^k - 1] && ! PrimeQ[n*2^k + 1], k++]; If[k > l, l = k, {}], {n, 10^5}]] (* Arkadiusz Wesolowski, Sep 04 2011 *)
a(22) was found in 2002 by Wilfrid Keller.
Original entry on oeis.org
0, 1, 2, 3, 6, 8, 583, 6393, 9715, 33288, 3321063, 5054502, 31172165
Offset: 1
A040076(1)=0, so a(1)=0;
A040076(3)=1, so a(2)=1;
-
k = -1; n = 0; km = k; While[k < 8192, n++; k = 0; cp = n*(2^ k) + 1; While[(! PrimeQ[cp]) && (k < 8192), k++; cp = n*(2^k) + 1]; If[k > km, km = k; Print[{n, km}]]]
A240113
Integers for which the smallest m in A040081 such that n*2^m - 1 is prime (A038699) increases.
Original entry on oeis.org
1, 13, 23, 43, 59, 88, 127, 148, 659
Offset: 1
-
a=0; for(n=1, 148, m=0; while(!ispseudoprime(n*2^m-1), m++); if(m>a, a=m; print1(n, ", ")));
Showing 1-7 of 7 results.
Comments