A129501 A103994 * A115361.
1, 2, 1, -1, 0, 1, 3, 2, 0, 1, -1, 0, 0, 0, 1, -2, -1, 2, 0, 0, 1, -1, 0, 0, 0, 0, 0, 1, 4, 3, 0, 2, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 1, -2, -1, 0, 0, 2, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -3, -2, 3, -1, 0, 2, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1
Examples
First few rows of the triangle are: 1; 2, 1; -1, 0, 1; 3, 2, 0, 1; -1, 0, 0, 0, 1; -2, -1, 2, 0, 0, 1; -1, 0, 0, 0, 0, 0, 1; 4, 3, 0, 2, 0, 0, 0, 1; 0, 0, -1, 0, 0, 0, 0, 0, 1; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
Crossrefs
Programs
-
Mathematica
b[n_] := Module[{e}, Sum[e = IntegerExponent[d, 2]; If[d == 2^e, MoebiusMu[n/d] Binomial[2 + e, 2], 0], {d, Divisors[n]}]]; T[n_, k_] := If[Divisible[n, k], b[n/k], 0]; Table[T[n, k], {n, 1, 13}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 24 2019 *)
-
PARI
T(n,k)={ if(n%k, 0, sumdiv(n/k, d, my(e=valuation(d, 2)); if(d==1<
Andrew Howroyd, Aug 03 2018
Formula
T(n,k) = A317673(n/k) for k | n, T(n,k) = 0 otherwise. - Andrew Howroyd, Aug 03 2018
Extensions
Terms a(56) and beyond from Andrew Howroyd, Aug 03 2018
Comments