1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 6, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 7, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 6, 1, 2, 1, 3, 1, 2, 1, 4, 1
Offset: 1
A054525
Triangle T(n,k): T(n,k) = mu(n/k) if k divides n, T(n,k) = 0 otherwise (n >= 1, 1 <= k <= n).
Original entry on oeis.org
1, -1, 1, -1, 0, 1, 0, -1, 0, 1, -1, 0, 0, 0, 1, 1, -1, -1, 0, 0, 1, -1, 0, 0, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 1, 1, -1, 0, 0, -1, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, -1, 0, -1, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1
Triangle (with rows n >= 1 and columns k >= 1) begins as follows:
1;
-1, 1;
-1, 0, 1;
0, -1, 0, 1;
-1, 0, 0, 0, 1;
1, -1, -1, 0, 0, 1;
-1, 0, 0, 0, 0, 0, 1;
0, 0, 0, -1, 0, 0, 0, 1; ...
Matrix inverse is triangle A051731:
1;
1, 1;
1, 0, 1;
1, 1, 0, 1;
1, 0, 0, 0, 1;
1, 1, 1, 0, 0, 1;
1, 0, 0, 0, 0, 0, 1;
1, 1, 0, 1, 0, 0, 0, 1; ...
- G. C. Greubel, Table of n, a(n) for the first 50 rows
- Trevor Hyde, Cyclotomic factors of necklace polynomials, arXiv:1811.08601 [math.CO], 2018.
- N. Metropolis and G.-C. Rota, Witt vectors and the algebra of necklaces, Adv. Math. 50 (1983), 95-125.
- Pieter Moree, The formal series Witt transform, Discr. Math. 295 (2005), 143-160.
-
A054525 := proc(n,k)
if n mod k = 0 then
numtheory[mobius](n/k) ;
else
0 ;
end if;
end proc: # R. J. Mathar, Oct 21 2012
-
t[n_, k_] := If[Divisible[n, k], MoebiusMu[n/k ], 0]; Table[t[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 14 2014 *)
-
tabl(nn) = {T = matrix(nn, nn, n, k, if (! (n % k), moebius(n/k), 0)); for (n=1, nn, for (k=1, n, print1(T[n, k], ", ");); print(););} \\ Michel Marcus, Mar 28 2015
-
row(n) = Vecrev(sumdiv(n, d, moebius(d)*x^(n/d))/x); \\ Michel Marcus, Aug 24 2021
-
from math import isqrt, comb
from sympy import mobius
def A054525(n): return 0 if (a:=(m:=isqrt(k:=n<<1))+(k>m*(m+1)))%(b:=n-comb(a,2)) else mobius(a//b) # Chai Wah Wu, Nov 13 2024
Original entry on oeis.org
1, 2, 1, -1, 0, 1, 3, 2, 0, 1, -1, 0, 0, 0, 1, -2, -1, 2, 0, 0, 1, -1, 0, 0, 0, 0, 0, 1, 4, 3, 0, 2, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 1, -2, -1, 0, 0, 2, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -3, -2, 3, -1, 0, 2, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1
First few rows of the triangle are:
1;
2, 1;
-1, 0, 1;
3, 2, 0, 1;
-1, 0, 0, 0, 1;
-2, -1, 2, 0, 0, 1;
-1, 0, 0, 0, 0, 0, 1;
4, 3, 0, 2, 0, 0, 0, 1;
0, 0, -1, 0, 0, 0, 0, 0, 1;
...
-
b[n_] := Module[{e}, Sum[e = IntegerExponent[d, 2]; If[d == 2^e, MoebiusMu[n/d] Binomial[2 + e, 2], 0], {d, Divisors[n]}]];
T[n_, k_] := If[Divisible[n, k], b[n/k], 0];
Table[T[n, k], {n, 1, 13}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 24 2019 *)
-
T(n,k)={ if(n%k, 0, sumdiv(n/k, d, my(e=valuation(d, 2)); if(d==1<Andrew Howroyd, Aug 03 2018
Comments