A104383 Number of distinct partitions of triangular numbers n*(n+1)/2.
1, 1, 2, 4, 10, 27, 76, 222, 668, 2048, 6378, 20132, 64234, 206848, 671418, 2194432, 7215644, 23853318, 79229676, 264288462, 884987529, 2973772212, 10024300890, 33888946600, 114872472064, 390334057172, 1329347719190, 4536808055808, 15513418629884
Offset: 0
Keywords
References
- Abramowitz, M. and Stegun, I. A. (Editors). "Partitions into Distinct Parts." S24.2.2 in Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, 9th printing. New York: Dover, pp. 825-826, 1972.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Eric Weisstein's World of Mathematics, Partition Function Q.
Programs
-
Maple
with(numtheory): b:= proc(n) option remember; `if`(n=0, 1, add(add( `if`(d::odd, d, 0), d=divisors(j))*b(n-j), j=1..n)/n) end: a:= n-> b(n*(n+1)/2): seq(a(n), n=0..30); # Alois P. Heinz, Nov 24 2016
-
Mathematica
Join[{1},PartitionsQ/@Accumulate[Range[30]]] (* Harvey P. Dale, Dec 29 2012 *)
-
PARI
{a(n)=polcoeff(prod(k=1,n*(n+1)/2,1+x^k,1+x*O(x^(n*(n+1)/2))),n*(n+1)/2)}
Formula
Limit_{n-->inf} a(n+1)/a(n) = exp(sqrt(Pi^2/6)) = 3.605822247984...
Extensions
a(0)=1 prepended by Alois P. Heinz, Aug 05 2016
Comments