cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104383 Number of distinct partitions of triangular numbers n*(n+1)/2.

Original entry on oeis.org

1, 1, 2, 4, 10, 27, 76, 222, 668, 2048, 6378, 20132, 64234, 206848, 671418, 2194432, 7215644, 23853318, 79229676, 264288462, 884987529, 2973772212, 10024300890, 33888946600, 114872472064, 390334057172, 1329347719190, 4536808055808, 15513418629884
Offset: 0

Views

Author

Paul D. Hanna, Mar 04 2005

Keywords

Comments

Equals row sums of triangle A104382. Asymptotics: a(n) ~ exp(Pi*sqrt((n^2+n)/6))/(2*6^(1/4))/(n^2+n)^(3/4).

References

  • Abramowitz, M. and Stegun, I. A. (Editors). "Partitions into Distinct Parts." S24.2.2 in Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, 9th printing. New York: Dover, pp. 825-826, 1972.

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n=0, 1, add(add(
          `if`(d::odd, d, 0), d=divisors(j))*b(n-j), j=1..n)/n)
        end:
    a:= n-> b(n*(n+1)/2):
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 24 2016
  • Mathematica
    Join[{1},PartitionsQ/@Accumulate[Range[30]]] (* Harvey P. Dale, Dec 29 2012 *)
  • PARI
    {a(n)=polcoeff(prod(k=1,n*(n+1)/2,1+x^k,1+x*O(x^(n*(n+1)/2))),n*(n+1)/2)}

Formula

Limit_{n-->inf} a(n+1)/a(n) = exp(sqrt(Pi^2/6)) = 3.605822247984...
a(n) = A000009(A000217(n)). - Alois P. Heinz, Nov 24 2016

Extensions

a(0)=1 prepended by Alois P. Heinz, Aug 05 2016