A104449 Fibonacci sequence with initial values a(0) = 3 and a(1) = 1.
3, 1, 4, 5, 9, 14, 23, 37, 60, 97, 157, 254, 411, 665, 1076, 1741, 2817, 4558, 7375, 11933, 19308, 31241, 50549, 81790, 132339, 214129, 346468, 560597, 907065, 1467662, 2374727, 3842389, 6217116, 10059505, 16276621, 26336126, 42612747, 68948873, 111561620
Offset: 0
References
- V. E. Hoggatt, Jr., Fibonacci and Lucas Numbers. Houghton, Boston, MA, 1969.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- John Conway, Alex Ryba, The extra Fibonacci series and the Empire State Building, Math. Intelligencer 38 (2016), no. 1, 41-48. (Uses the name Pibonacci.)
- Tanya Khovanova, Recursive Sequences
- Ron Knott, Fibonacci Numbers and the Golden Section .
- Eric Weisstein's World of Mathematics, Fibonacci Number
- Shaoxiong Yuan, Generalized Identities of Certain Continued Fractions, arXiv:1907.12459 [math.NT], 2019.
- Index entries for linear recurrences with constant coefficients, signature (1,1).
- Index entries for sequences related to Chebyshev polynomials.
Crossrefs
Programs
-
GAP
a:=[3,1];; for n in [3..40] do a[n]:=a[n-1]+a[n-2]; od; a; # G. C. Greubel, May 29 2019
-
Magma
[Fibonacci(n-1) + Lucas(n): n in [0..40]]; // G. C. Greubel, May 29 2019
-
Maple
a:=n->3*fibonacci(n-1)+fibonacci(n): seq(a(n), n=0..40); # Zerinvary Lajos, Oct 05 2007
-
Mathematica
LinearRecurrence[{1,1},{3,1},40] (* Harvey P. Dale, May 23 2014 *)
-
PARI
a(n)=3*fibonacci(n-1)+fibonacci(n) \\ Charles R Greathouse IV, Jun 05 2011
-
Sage
((3-2*x)/(1-x-x^2)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, May 29 2019
Formula
a(n) = a(n-1) + a(n-2) with a(0) = 3, a(1) = 1.
a(n) = 3*Fibonacci(n-1) + Fibonacci(n). - Zerinvary Lajos, Oct 05 2007
G.f.: (3-2*x)/(1-x-x^2). - Philippe Deléham, Nov 19 2008
a(n) = ( (3*sqrt(5)-1)*((1+sqrt(5))/2)^n + (3*sqrt(5)+1)*((1-sqrt(5) )/2)^n )/(2*sqrt(5)). - Bogart B. Strauss, Jul 19 2013
Bisection: a(2*k) = 4*S(k-1, 3) - 3*S(k-2, 3), a(2*k+1) = 2*S(k-1, 3) + S(k, 3) for k >= 0, with the Chebyshev S(n, 3) polynomials from A001906(n+1) for n >= -1. - Wolfdieter Lang, May 28 2019
a(n) = Fibonacci(n-1) + Lucas(n). - G. C. Greubel, May 29 2019
a(3n + 4)/a(3n + 1) = continued fraction 4,4,4,...,4,9 (that's n 4's followed by a single 9). - Greg Dresden and Shaoxiong Yuan, Jul 16 2019
E.g.f.: (exp((1/2)*(1 - sqrt(5))*x)*(1 + 3*sqrt(5) + (- 1 + 3*sqrt(5))*exp(sqrt(5)*x)))/(2*sqrt(5)). - Stefano Spezia, Jul 18 2019
Extensions
Name changed by Wolfdieter Lang, Jun 17 2019
Comments