cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104474 a(n) = binomial(n+3,3)*binomial(n+7,3).

Original entry on oeis.org

35, 224, 840, 2400, 5775, 12320, 24024, 43680, 75075, 123200, 194480, 297024, 440895, 638400, 904400, 1256640, 1716099, 2307360, 3059000, 4004000, 5180175, 6630624, 8404200, 10556000, 13147875, 16248960, 19936224, 24295040, 29419775
Offset: 0

Views

Author

Zerinvary Lajos, Apr 18 2005

Keywords

Examples

			a(0): C(0+3,3)*C(0+7,3) = C(3,3)*C(7,3) = 1*35 = 35.
a(7): C(7+3,3)*C(7+7,3) = C(10,3)*(14,3) = 120*364 = 43680.
		

Crossrefs

Programs

  • Magma
    [Binomial(n+3,3)*Binomial(n+7,3): n in [0..30]]; // Vincenzo Librandi, Jul 31 2015
    
  • Mathematica
    f[n_] := Binomial[n + 3, 3]Binomial[n + 7, 3]; Table[ f[n], {n, 0, 28}] (* Robert G. Wilson v, Apr 20 2005 *)
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{35,224,840,2400,5775,12320,24024},40] (* Harvey P. Dale, May 25 2025 *)
  • PARI
    vector(30, n, n--; binomial(n+3,3)*binomial(n+7,3)) \\ Michel Marcus, Jul 31 2015
    
  • SageMath
    def A104474(n): return 140*binomial(n+7,7)//(n+4)
    print([A104474(n) for n in range(31)]) # G. C. Greubel, Mar 05 2025

Formula

a(n) = (1/36)*(n+1)*(n+2)*(n+3)*(n+5)*(n+6)*(n+7).
G.f.: (35 - 21*x + 7*x^2 - x^3)/(1-x)^7. - R. J. Mathar, Nov 30 2015
a(n) = A000292(n+1)*A000292(n+5). - R. J. Mathar, Nov 30 2015
From Amiram Eldar, Jan 06 2021: (Start)
Sum_{n>=0} 1/a(n) = 7/200.
Sum_{n>=0} (-1)^n/a(n) = 1/40. (End)
From G. C. Greubel, Mar 05 2025: (Start)
a(n) = 140*A000580(n+7)/(n+4).
E.g.f.: (1/36)*(1260 + 6804*x + 7686*x^2 + 3102*x^3 + 531*x^4 + 39*x^5 + x^6)*exp(x). (End)

Extensions

More terms from Robert G. Wilson v, Apr 20 2005