cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104502 Number of partitions where no part is a multiple of 9.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 22, 29, 41, 54, 74, 96, 128, 165, 216, 275, 354, 447, 569, 712, 896, 1113, 1388, 1712, 2117, 2595, 3186, 3882, 4735, 5739, 6959, 8392, 10121, 12150, 14582, 17429, 20823, 24789, 29494, 34979, 41456, 48993, 57856, 68148, 80204
Offset: 0

Views

Author

Eric W. Weisstein, Mar 11 2005

Keywords

Comments

Coefficients of the B-Dyson Mod 27 identity.
Also partitions where parts are repeated at most 8 times. - Joerg Arndt, Dec 31 2012

Examples

			G.f. = 1 + q + 2*q^2 + 3*q^3 + 5*q^4 + 7*q^5 + 11*q^6 + 15*q^7 + 22*q^8 + 29*q^9 + ...
B(q) = q + q^4 + 2*q^7 + 3*q^10 + 5*q^13 + 7*q^16 + 11*q^19 + 15*q^22 + ...
		

References

  • F. J. Dyson, A walk through Ramanujan's garden, pp. 7-28 of G. E. Andrews et al., editors, Ramanujan Revisited. Academic Press, NY, 1988, see p. 15, eq. (11).

Crossrefs

Number of r-regular partitions for r = 2 through 12: A000009, A000726, A001935, A035959, A219601, A035985, A261775, A104502, A261776, A328545, A328546.

Programs

  • Maple
    seq(coeff(series(mul((1-x^(9*k))/(1-x^k),k=1..n),x,n+1), x, n), n = 0 .. 50); # Muniru A Asiru, Sep 29 2018
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 - x^(9*k))/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 31 2015 *)
    a[n_] := a[n] = (1/n) Sum[DivisorSum[k, Boole[!Divisible[#, 9]] #&] a[n-k], {k, 1, n}]; a[0] = 1;
    a /@ Range[0, 50] (* Jean-François Alcover, Oct 01 2019, after Seiichi Manyama *)
    Table[Count[IntegerPartitions@n, x_ /; ! MemberQ [Mod[x, 9], 0, 2] ], {n, 0, 46}] (* Robert Price, Jul 29 2020 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^9 + A) / eta(x + A), n))}; /* Michael Somos, Jan 09 2006 */
    
  • PARI
    {A116607(n)=sigma(n)-if(n%9==0, 9*sigma(n/9))}
    {a(n)=polcoeff(exp(sum(k=1, n+1, A116607(k)*x^k/k+x*O(x^n))), n)} /* Paul D. Hanna, Jun 13 2011 */

Formula

Expansion of q^(-1/3) * eta(q^9) / eta(q) in powers of q. - Michael Somos, Jan 09 2006
Euler transform of period 9 sequence [1, 1, 1, 1, 1, 1, 1, 1, 0, ...]. - Michael Somos, Jan 09 2006
Given g.f. A(x), then B(q) = q * A(q^3) satisfies 0 = f(B(q), B(q^2)) where f(u, v) = u^3 + v^3 - u*v - 3*(u*v)^2. - Michael Somos, Jan 09 2006
G.f.: Product_{k>0} (1-x^(9k))/(1-x^k) = 1 + 1/(1-x)*(Sum_{k>0} x^(k^2+k) Product_{i=1..k} (1+x^i+x^(2i))/((1-x^(2i))*(1-x^(2i+1))))
G.f. A(x) = 1/g.f. A062246.
Logarithmic derivative yields A116607 (sum of the divisors of n which are not divisible by 9). - Paul D. Hanna, Jun 13 2011
a(n) ~ 2*Pi * BesselI(1, 4*sqrt(3*n + 1) * Pi/9) / (9*sqrt(3*n + 1)) ~ exp(4*Pi*sqrt(n/3)/3) / (sqrt(2) * 3^(7/4) * n^(3/4)) * (1 + (2*Pi/(9*sqrt(3)) - 9*sqrt(3)/(32*Pi)) / sqrt(n) + (2*Pi^2/243 - 405/(2048*Pi^2) - 5/16) / n). - Vaclav Kotesovec, Aug 31 2015, extended Jan 14 2017
a(n) = (1/n)*Sum_{k=1..n} A116607(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 25 2017
G.f. is a period 1 Fourier series that satisfies f(-1 / (81 t)) = 1/3 g(t) where g() is the g.f. for A062246. - Michael Somos, Jun 27 2017

Extensions

Simplified definition. - N. J. A. Sloane, Oct 20 2019