cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A120580 Hankel transform of Sum_{k=0..n} C(2k,k).

Original entry on oeis.org

1, 0, -4, -8, 0, 32, 64, 0, -256, -512, 0, 2048, 4096, 0, -16384, -32768, 0, 131072, 262144, 0, -1048576, -2097152, 0, 8388608, 16777216, 0, -67108864, -134217728, 0, 536870912, 1073741824, 0, -4294967296, -8589934592, 0, 34359738368, 68719476736, 0, -274877906944, -549755813888, 0
Offset: 0

Views

Author

Paul Barry, Jun 15 2006

Keywords

Comments

Hankel transform of A006134.
Hankel transform of A098479. - Paul Barry, Sep 19 2008
Hankel transform of A025565. - Paul Barry, Mar 26 2010

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2,-4},{1,0},50] (* Harvey P. Dale, Feb 13 2023 *)

Formula

G.f.: (1-2x)/(1-2x+4x^2).
a(n) = 2^n*(cos(Pi*n/3)-sin(Pi*n/3)/sqrt(3)).
E.g.f.: exp(x)*(cos(sqrt(3)*x) - sin(sqrt(3)*x)/sqrt(3)). - Stefano Spezia, Jul 15 2024

A287479 Expansion of g.f. (x + x^2)/(1 + 3*x^2).

Original entry on oeis.org

0, 1, 1, -3, -3, 9, 9, -27, -27, 81, 81, -243, -243, 729, 729, -2187, -2187, 6561, 6561, -19683, -19683, 59049, 59049, -177147, -177147, 531441, 531441, -1594323, -1594323, 4782969, 4782969, -14348907, -14348907, 43046721, 43046721, -129140163, -129140163, 387420489
Offset: 0

Views

Author

Keywords

Comments

This is the inverse binomial transform of A157241.
Successive differences of A157241 begin:
0, 1, 3, 3, -5, -21, -21, 43, 171, 171, ... = A157241
1, 2, 0, -8, -16, 0, 64, 128, 0, -512, ... = A088138
1, -2, -8, -8, 16, 64, 64, -128, -512, -512, ... = A138230
-3, -6, 0, 24, 48, 0, -192, -384, 0, 1536, ...
-3, 6, 24, 24, -48, -192, -192, 384, 1536, 1536, ...
9, 18, 0, -72, -144, 0, 576, 1152, 0, -4608, ...
9, -18, -72 -72, 144, 576, 576, -1152, -4608, -4608, ...
...
a(n) is the n-th term of the first column.
Successive differences of a(n) begin:
0, 1, 1, -3, -3, 9, 9, -27, -27, 81, ...
1, 0, -4, 0, 12, 0, -36, 0, 108, 0, ...
-1, -4, 4, 12, -12, -36, 36, 108, -108, -324, ...
-3, 8, 8, -24, -24, 72, 72, -216, -216, 648, ...
11, 0, -32, 0, 96, 0, -288, 0, 864, 0, ...
-11, -32, 32, 96, -96, -288, 288, 864, -864, -2592, ...
-21, 64, 64, -192, -192, 576, 576, -1728, -1728, 5184, ...
85, 0, -256, 0, 768, 0, -2304, 0, 6912, 0, ...
...
First column appears to be a subsequence of Jacobsthal numbers A001045 (the trisection A082311 is missing), second column is A104538, and third column is A137717.
a(n) = A128019(n-2) for n > 2. - Georg Fischer, Oct 23 2018

Crossrefs

Programs

  • Mathematica
    Join[{0}, LinearRecurrence[{0, -3}, {1, 1}, 40]]
    (* or, computation from b = A157241 : *)
    b[n_] := (Switch[Mod[n, 3], 0, (-1)^((n + 3)/3), 1, (-1)^((n + 5)/3), 2, (-1)^((n + 4)/3)*2]*2^n + 1)/3; tb = Table[b[n], {n, 0, 40}]; Table[ Differences[tb, n], {n, 0, 40}][[All, 1]]
  • PARI
    concat([0], Vec((x + x^2)/(1 + 3*x^2) + O(x^40))) \\ Felix Fröhlich, Oct 23 2018

Formula

a(n) = -3*a(n-2) for n > 2.
E.g.f.: (1 - cos(sqrt(3)*x) + sqrt(3)*sin(sqrt(3)*x))/3. - Stefano Spezia, Jul 15 2024
Showing 1-2 of 2 results.