cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A074760 Decimal expansion of lambda(1) in Li's criterion.

Original entry on oeis.org

0, 2, 3, 0, 9, 5, 7, 0, 8, 9, 6, 6, 1, 2, 1, 0, 3, 3, 8, 1, 4, 3, 1, 0, 2, 4, 7, 9, 0, 6, 4, 9, 5, 2, 9, 1, 6, 2, 1, 9, 3, 2, 1, 2, 7, 1, 5, 2, 0, 5, 0, 7, 5, 9, 5, 2, 5, 3, 9, 2, 0, 7, 2, 2, 1, 2, 9, 7, 1, 3, 5, 6, 4, 7, 6, 7, 2, 4, 5, 7, 9, 9, 7, 0, 7, 9, 8, 5, 6, 9, 5, 1, 1, 7, 0, 9, 8, 3, 3, 3, 6, 4, 3, 0
Offset: 0

Views

Author

Benoit Cloitre, Sep 28 2002

Keywords

Comments

Decimal expansion of -B =(1/2)*sum(r in Z, 1/r/(1-r)) where Z is the set of zeros of the Riemann zeta function which lie in the strip 0 <= Re(z) <= 1.
According to Gun, Murty, & Rath (2018), it is not even known whether this constant is rational or not (though see Theorem 3.1), though they show that it is transcendental under Schanuel’s conjecture. - Charles R Greathouse IV, Nov 12 2021

Examples

			0.023095708966121033814310247906495291621932127152050759525392...
		

References

  • H. M. Edwards, Riemann's Zeta Function, Dover Publications Inc. 1974, p. 160.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Sections 1.6.2, 2.21, and 2.32, pp. 42, 168, 204.
  • S. J. Patterson, "An introduction to the theory of the Riemann Zeta-function", Cambridge Studies in Advanced Mathematics 14, p. 34.

Crossrefs

Cf. A002410 (nearest integer to imaginary part of n-th zeta zero), A195423 (twice the constant).
Cf. A104539 (lambda_2), A104540 (lambda_3), A104541 (lambda_4), A104542 (lambda_5).
Cf. A306339 (lambda_6), A306340 (lambda_7), A306341 (lambda_8).

Programs

  • Mathematica
    RealDigits[EulerGamma/2 + 1 - Log[4 Pi]/2, 10, 110][[1]]
  • PARI
    Euler/2+1-log(4*Pi)/2 \\ Charles R Greathouse IV, Jan 26 2012

Formula

-B = Gamma/2 + 1 - log(4*Pi)/2 = 0.0230957...

Extensions

Name simplified by Eric W. Weisstein, Feb 08 2019

A104539 Decimal expansion of lambda(2) in Li's criterion.

Original entry on oeis.org

0, 9, 2, 3, 4, 5, 7, 3, 5, 2, 2, 8, 0, 4, 6, 6, 7, 0, 3, 8, 5, 7, 2, 8, 4, 8, 6, 1, 9, 2, 0, 6, 7, 8, 8, 6, 7, 7, 4, 1, 3, 2, 2, 1, 6, 6, 2, 8, 2, 4, 6, 5, 0, 9, 3, 9, 9, 6, 3, 2, 5, 9, 7, 9, 3, 3, 9, 8, 5, 3, 8, 9, 2, 0, 3, 1, 1, 6, 1, 1, 5, 4, 1, 1, 7, 2, 9, 4, 0, 2, 3, 4, 6, 2, 1, 0, 7, 4, 7, 6, 1, 1, 7
Offset: 0

Views

Author

Eric W. Weisstein, Mar 13 2005

Keywords

Examples

			0.0923457352...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.32, p. 204.

Crossrefs

Cf. A074760 (lambda_1), A104540 (lambda_3), A104541 (lambda_4), A104542 (lambda_5).
Cf. A306339 (lambda_6), A306340 (lambda_7), A306341 (lambda_8).

Programs

  • Mathematica
    lambda[n_] := Limit[D[s^(n - 1)*Log[RiemannXi[s]], {s, n}], s -> 1]/(n - 1)!; Join[{0}, RealDigits[lambda[2], 10, 102] // First]
    lambda[2] = 1 + EulerGamma - EulerGamma^2 + Pi^2/8 - Log[4 Pi] - 2*StieltjesGamma[1]; Join[{0}, RealDigits[lambda[2], 10, 102] // First] (* Jean-François Alcover, Oct 31 2012, after Eric W. Weisstein, updated May 18 2016 *)
    RealDigits[With[{e = EulerGamma, g = StieltjesGamma}, 1 + e - e^2 + Pi^2/8 - 2 g[1] - Log[4 Pi]], 10, 110, -1][[1]] (* Eric W. Weisstein, Feb 08 2019 *)

A104541 Decimal expansion of lambda(4) in Li's criterion.

Original entry on oeis.org

3, 6, 8, 7, 9, 0, 4, 7, 9, 4, 9, 2, 2, 4, 1, 6, 3, 8, 5, 9, 0, 5, 1, 1, 4, 8, 9, 6, 3, 7, 7, 5, 6, 0, 7, 2, 2, 6, 2, 1, 6, 6, 6, 9, 3, 9, 6, 0, 8, 5, 2, 8, 0, 4, 8, 2, 3, 1, 1, 8, 8, 5, 6, 8, 5, 0, 9, 4, 6, 2, 5, 3, 2, 2, 6, 5, 7, 7, 9, 0, 2, 6, 2, 9, 0, 3, 1, 5, 2, 8, 3, 9, 8, 6, 0, 1, 5, 5, 8, 4, 2, 1
Offset: 0

Views

Author

Eric W. Weisstein, Mar 13 2005

Keywords

Examples

			0.368790479...
		

Crossrefs

Cf. A074760 (lambda_1), A104539 (lambda_2), A104540 (lambda_3), A104542 (lambda_5).
Cf. A306339 (lambda_6), A306340 (lambda_7), A306341 (lambda_8).

Programs

  • Mathematica
    lambda[n_] := Limit[D[s^(n - 1) Log[RiemannXi[s]], {s, n}], s -> 1]/(n - 1)!; RealDigits[N[lambda[4], 110]][[1]][[1 ;; 102]] (* Jean-François Alcover, Oct 31 2012, after Eric W. Weisstein, updated May 18 2016 *)
    RealDigits[With[{e = EulerGamma, g = StieltjesGamma}, 1 + 2 e - 6 e^2 + 4 e^3 - e^4 + 3 Pi^2/4 + Pi^4/96 - 12 g[1] + 12 e g[1] - 4 e^2 g[1] - 2 g[1]^2 + 6 g[2] - 2 e g[2] - 2 g[3]/3 - 2 Log[4 Pi] - 7 Zeta[3]/2], 10, 110][[1]] (* Eric W. Weisstein, Feb 08 2019 *)

Formula

3*Pi^2/4 + Pi^4/96 - 2*log(4) - 2*log(Pi) + 2*gamma - 6*gamma^2 + 4*gamma^3 - gamma^4 - 12*gamma(1) + 12*gamma*gamma(1) - 4*gamma^2*gamma(1) - 2*gamma(1)^2 + 6*gamma(2) - 2*gamma*gamma(2) - 2*gamma(3)/3 - 7*zeta(3)/2 + 1. - Jean-François Alcover, Jul 02 2014

A104542 Decimal expansion of lambda(5) in Li's criterion.

Original entry on oeis.org

5, 7, 5, 5, 4, 2, 7, 1, 4, 4, 6, 1, 1, 7, 7, 4, 5, 2, 4, 3, 1, 1, 0, 6, 4, 0, 5, 4, 9, 2, 8, 6, 3, 8, 3, 3, 5, 6, 7, 4, 5, 6, 6, 1, 5, 1, 7, 9, 7, 9, 9, 5, 3, 9, 5, 2, 9, 2, 4, 7, 5, 8, 1, 9, 3, 5, 9, 5, 4, 5, 2, 1, 3, 8, 3, 6, 2, 3, 6, 4, 0, 7, 8, 1, 9, 0, 1, 6, 3, 1, 0, 0, 5, 4, 8, 5, 8, 9, 4, 7, 2, 3
Offset: 0

Views

Author

Eric W. Weisstein, Mar 13 2005

Keywords

Examples

			0.575542714...
		

Crossrefs

Cf. A074760 (lambda_1), A104539 (lambda_2), A104540 (lambda_3), A104541 (lambda_4).
Cf. A306339 (lambda_6), A306340 (lambda_7), A306341 (lambda_8).

Programs

  • Mathematica
    lambda[n_] := Limit[D[s^(n - 1)*Log[xi[s]], {s, n}], s -> 1]/(n - 1)!; RealDigits[N[lambda[5], 110]][[1]][[1 ;; 102]] (* Jean-François Alcover, Oct 31 2012, after Eric W. Weisstein, updated May 18 2016 *)
    RealDigits[With[{e = EulerGamma, g = StieltjesGamma}, 1 + 5 e/2 - 10 e^2 + 10 e^3 - 5 e^4 + e^5 + 5 Pi^2/4 + (5 Pi^4)/96 - 20 g[1] + 30 e g[1] - 20 e^2 g[1] + 5 e^3 g[1] - 10 g[1]^2 + 5 e g[1]^2 + 15 g[2] - 10 e g[2] + 5/2 e^2 g[2] + 5/2 g[1] g[2] - 10 g[3]/3 + 5/6 e g[3] + 5 g[4]/24 - Log[32] - 5 Log[Pi]/2 - 35 Zeta[3]/4 - 31 Zeta[5]/32], 10, 110][[1]] (* Eric W. Weisstein, Feb 08 2019 *)

Formula

lambda(5) = 5*Pi^2/4 + 5*Pi^4/96 - 5*log(4)/2 - 5*log(Pi)/2 + 5*gamma/2 - 10*gamma^2 + 10*gamma^3 - 5*gamma^4+gamma^5 - 20*gamma(1) + 30*gamma*gamma(1) - 20*gamma^2*gamma(1) + 5*gamma^3*gamma(1) - 10*gamma(1)^2 + 5*gamma*gamma(1)^2 + 15*gamma(2) - 10*gamma*gamma(2) + 5/2*gamma^2*gamma(2) + 5/2*gamma(1)*gamma(2) - 10*gamma(3)/3 + 5/6*gamma*gamma(3) + 5*gamma(4)/24 - 35*zeta(3)/4 - 31*zeta(5)/32+1. - Jean-François Alcover, Jul 02 2014

A306339 Decimal expansion of lambda(6) in Li's criterion.

Original entry on oeis.org

8, 2, 7, 5, 6, 6, 0, 1, 2, 2, 8, 2, 3, 7, 9, 2, 9, 7, 4, 2, 5, 0, 0, 2, 8, 2, 2, 0, 2, 0, 4, 9, 9, 9, 8, 1, 3, 6, 8, 3, 3, 7, 9, 6, 4, 7, 1, 9, 2, 6, 9, 0, 0, 5, 9, 4, 0, 4, 8, 5, 7, 9, 6, 1, 8, 9, 7, 9, 8, 3, 9, 5, 0, 3, 9, 3, 2, 7, 7, 2, 0, 8, 1, 0, 3, 6, 0, 6, 2, 0, 1, 7, 3, 9, 9, 4, 5, 1, 9, 2, 8, 7, 9, 2, 0, 0, 6, 8, 3, 0
Offset: 0

Views

Author

Eric W. Weisstein, Feb 08 2019

Keywords

Examples

			0.8275660122823792974...
		

Crossrefs

Cf. A074760 (lambda_1), A104539 (lambda_2), A104540 (lambda_3), A104541 (lambda_4).
Cf. A104542 (lambda_5), A306340 (lambda_7), A306341 (lambda_8).

Programs

  • Mathematica
    RealDigits[With[{e = EulerGamma, g = StieltjesGamma}, 1 + 3 e - 15 e^2 + 20 e^3 - 15 e^4 + 6 e^5 - e^6 + 15 Pi^2/8 + 5 Pi^4/32 + Pi^6/960 - 30 g[1] + 60 e g[1] - 60 e^2 g[1] + 30 e^3 g[1] - 6 e^4 g[1] - 30 g[1]^2 + 30 e g[1]^2 - 9 e^2 g[1]^2 - 2 g[1]^3 + 30 g[2] - 30 e g[2] + 15 e^2 g[2] - 3 e^3 g[2] + 15 g[1] g[2] - 6 e g[1] g[2] - 3 g[2]^2/4 - 10 g[3] + 5 e g[3] - e^2 g[3] - g[1] g[3] + 5 g[4]/4 - e g[4]/4 - g[5]/20 - 3 Log[4 Pi] - 35 Zeta[3]/2 - 93 Zeta[5]/16], 10, 110][[1]]

A306340 Decimal expansion of lambda(7) in Li's criterion.

Original entry on oeis.org

1, 1, 2, 4, 4, 6, 0, 1, 1, 7, 5, 7, 0, 9, 5, 9, 4, 9, 0, 5, 8, 2, 8, 2, 0, 1, 0, 8, 0, 1, 6, 9, 7, 5, 6, 4, 0, 4, 5, 9, 7, 7, 0, 9, 4, 3, 2, 3, 1, 3, 8, 3, 1, 4, 1, 2, 4, 8, 4, 0, 7, 6, 1, 5, 5, 8, 3, 7, 4, 2, 3, 1, 1, 5, 4, 6, 1, 5, 6, 0, 2, 7, 2, 4, 9, 6, 2, 9, 9, 6, 4, 9, 9, 1, 3, 4, 9, 0, 1, 2, 7, 0, 3, 9, 8, 6, 9, 9, 0, 4
Offset: 1

Views

Author

Eric W. Weisstein, Feb 08 2019

Keywords

Examples

			1.124460117570959490...
		

Crossrefs

Cf. A074760 (lambda_1), A104539 (lambda_2), A104540 (lambda_3).
Cf. A104541 (lambda_4), A104542 (lambda_5), A306339 (lambda_6), A306341 (lambda_8).

Programs

  • Mathematica
    RealDigits[With[{e = EulerGamma, g = StieltjesGamma}, 1 + 7 e/2 - 21 e^2 + 35 e^3 - 35 e^4 + 21 e^5 - 7 e^6 + e^7 + 21 Pi^2/8 + 35 Pi^4/96 + 7 Pi^6/960 - 42 g[1] + 105 e g[1] - 140 e^2 g[1] + 105 e^3 g[1] - 42 e^4 g[1] + 7 e^5 g[1] - 70 g[1]^2 + 105 e g[1]^2 - 63 e^2 g[1]^2 + 14 e^3 g[1]^2 - 14 g[1]^3 + 7 e g[1]^3 + 105 g[2]/2 - 70 e g[2] + 105/2 e^2 g[2] - 21 e^3 g[2] + 7/2 e^4 g[2] + 105/2 g[1] g[2] - 42 e g[1] g[2] + 21/2 e^2 g[1] g[2] + 7/2 g[1]^2 g[2] - 21 g[2]^2/4 + 7/4 e g[2]^2 - 70 g[3]/3 + 35/2 e g[3] - 7 e^2 g[3] + 7/6 e^3 g[3] - 7 g[1] g[3] + 7/3 e g[1] g[3] + 7/12 g[2] g[3] + 35 g[4]/8 - 7/4 e g[4] + 7/24 e^2 g[4] + 7/24 g[1] g[4] - 7 g[5]/20 + 7/120 e g[5] + 7 g[6]/720 - 7/2 Log[4 Pi] - 245 Zeta[3]/8 - 651 Zeta[5]/32 - 127 Zeta[7]/128], 10, 110][[1]]

A306341 Decimal expansion of lambda(8) in Li's criterion.

Original entry on oeis.org

1, 4, 6, 5, 7, 5, 5, 6, 7, 7, 1, 4, 7, 0, 6, 0, 6, 3, 2, 6, 5, 5, 5, 1, 4, 5, 4, 1, 9, 7, 7, 7, 4, 8, 7, 8, 7, 9, 1, 9, 8, 4, 7, 8, 6, 1, 8, 7, 4, 5, 4, 4, 4, 6, 5, 8, 4, 5, 8, 5, 7, 7, 5, 3, 8, 3, 5, 7, 9, 5, 0, 2, 8, 5, 2, 3, 5, 6, 3, 7, 9, 4, 4, 7, 8, 1, 1, 5, 1, 7, 5, 5, 6, 0, 3, 8, 0, 6, 9, 0, 0, 1, 2, 5, 0, 1, 5, 1, 8, 6
Offset: 1

Views

Author

Eric W. Weisstein, Feb 08 2019

Keywords

Examples

			1.465755677147060632...
		

Crossrefs

Cf. A074760 (lambda_1), A104539 (lambda_2), A104540 (lambda_3), A104541 (lambda_4).
Cf. A104542 (lambda_5), A306339 (lambda_6), A306340 (lambda_7).

Programs

  • Mathematica
    RealDigits[With[{e = EulerGamma, g = StieltjesGamma}, 1 + 4 e - 28 e^2 + 56 e^3 - 70 e^4 + 56 e^5 - 28 e^6 + 8 e^7 - e^8 + 7 Pi^2/2 + 35 Pi^4/48 + 7 Pi^6/240 + 17 Pi^8/161280 - 56 g[1] + 168 e g[1] - 280 e^2 g[1] + 280 e^3 g[1] - 168 e^4 g[1] + 56 e^5 g[1] - 8 e^6 g[1] - 140 g[1]^2 + 280 e g[1]^2 - 252 e^2 g[1]^2 + 112 e^3 g[1]^2 - 20 e^4 g[1]^2 - 56 g[1]^3 + 56 e g[1]^3 - 16 e^2 g[1]^3 - 2 g[1]^4 + 84 g[2] - 140 e g[2] + 140 e^2 g[2] - 84 e^3 g[2] + 28 e^4 g[2] - 4 e^5 g[2] + 140 g[1] g[2] - 168 e g[1] g[2] + 84 e^2 g[1] g[2] - 16 e^3 g[1] g[2] + 28 g[1]^2 g[2] - 12 e g[1]^2 g[2] - 21 g[2]^2 + 14 e g[2]^2 - 3 e^2 g[2]^2 - 2 g[1] g[2]^2 - 140 g[3]/3 + 140/3 e g[3] - 28 e^2 g[3] + 28/3 e^3 g[3] - 4/3 e^4 g[3] - 28 g[1] g[3] + 56/3 e g[1] g[3] - 4 e^2 g[1] g[3] - 4/3 g[1]^2 g[3] + 14/3 g[2] g[3] - 4/3 e g[2] g[3] - g[3]^2/9 + 35 g[4]/3 - 7 e g[4] + 7/3 e^2 g[4] - 1/3 e^3 g[4] + 7/3 g[1] g[4] - 2/3 e g[1] g[4] - 1/6 g[2] g[4] - 7 g[5]/5 + 7/15 e g[5] - 1/15 e^2 g[5] - 1/15 g[1] g[5] + 7 g[6]/90 - 1/90 e g[6] - g[7]/630 - 4 Log[4 Pi] - 49 Zeta[3] - 217 Zeta[5]/4 - 127 Zeta[7]/16], 10, 110][[1]]

A333360 Decimal expansion of Sum_{n>=1} 1/z(n)^3 where z(n) is the imaginary part of the n-th nontrivial zero of the Riemann zeta function.

Original entry on oeis.org

0, 0, 0, 7, 2, 9, 5, 4, 8, 2, 7, 2, 7, 0, 9, 7, 0, 4, 2, 1, 5, 8, 7, 5, 5, 1, 8, 5, 6, 9, 0, 9, 3, 9, 7, 0, 5, 0, 3, 3, 5, 1, 5, 0, 5, 7, 0, 3, 5, 5, 4, 2, 3, 7, 3, 5, 8, 9, 6, 5, 2, 7, 4, 4, 6, 6, 6, 1, 2, 3, 0, 2, 4, 4, 7, 1, 3, 2, 9, 1, 2, 8, 7, 8, 3, 2, 5, 6, 3, 9, 6, 7, 1, 7, 6, 2, 8, 3, 8, 4, 6, 5, 6, 7, 0, 2, 4, 1, 4, 3, 5, 8, 5, 2, 4
Offset: 0

Views

Author

Artur Jasinski, Mar 16 2020

Keywords

Comments

a(1)-a(7) published by André Voros in 2001.
a(8)-a(20) computed by David Platt, Mar 15 2020.
a(21)-a(78) computed by Fredrik Johansson, Aug 04 2022 by mpmath procedure.
a(79)-a(350) computed by Artur Kawalec, Aug 15 2022 up to 350 decimal digits on basis algorithm of Juan Arias de Reyna.
a(351)-a(495) computed by Juan Arias de Reyna, using his implementation in mpmath from 2010, documented in his paper from 2020 (see link).
b-file on basis data from email Aug 16 2022 of Juan Arias de Reyna to Artur Jasinski.
Sum_{m>=1} 1/z(m) is a divergent series; see A332614.
Sum_{m>=1} 1/z(m)^2 = 0.0231049931...; see A332645.
Sum_{m>=1} 1/z(m)^3 = 0.0007295482727...; this sequence.
Sum_{m>=1} 1/z(m)^4 = 0.0000371725992...; see A335815.
Sum_{m>=1} 1/z(m)^5 = 0.0000022311886...; see A335814.
Sum_{m>=1} 1/z(m)^6 = 0.0000001441739...; see A335826.
Sum_{m>=1} 1/(1/4 + z(m)^2) = 0.023095708966...; see A074760.
Sum_{m>=1} 1/(1/2 + i*z(m))^2 + 1/(1/2 - i*z(m))^2 = -0.046154317...; see A245275.
Sum_{m>=1} 1/(1/2 + i*z(m))^3 + 1/(1/2 - i*z(m))^3 = -0.00011115823...; see A245276.
Sum_{r>=1} Sum_{m>=n+1} 1/(z(r)*z(m))^3 = 0.00000619403... see A355283.

Examples

			0.00072954827270970421...
		

Crossrefs

Programs

  • Python
    from mpmath import *
    mp.dps = 90
    nprint(secondzeta(3), 78)

Formula

No explicit formula is known (André Voros, personal communication to Artur Jasinski, Mar 09 2020).

A335814 Decimal expansion of Sum_{n>=1} 1/z(n)^5 where z(n) is the imaginary part of the n-th nontrivial zero of the Riemann zeta function.

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 2, 3, 1, 1, 8, 8, 6, 9, 9, 5, 0, 2, 1, 0, 3, 3, 2, 8, 6, 4, 0, 6, 2, 8, 6, 9, 1, 8, 3, 7, 1, 9, 3, 3, 7, 6, 0, 7, 6, 4, 3, 1, 0, 8, 7, 9, 3, 4, 4, 8, 9, 7, 7, 8, 2, 2, 6, 1, 7, 9, 8, 5, 9, 7, 8, 1, 2, 2, 2, 1, 5, 2, 4, 2, 3, 6, 5, 8, 2, 4, 7, 0, 9, 5, 4, 4, 6, 6, 1, 3, 6, 8, 3, 3, 9, 6, 6, 4, 4, 0, 2, 4, 7, 2, 9, 7, 2, 8, 6
Offset: 0

Views

Author

Artur Jasinski, Jun 25 2020

Keywords

Comments

a(1)-a(34) computed by David Platt, Mar 15 2020.
a(35)-a(78) computed by Fredrik Johansson, Aug 04 2022 by mpmath procedure.
a(79)-a(115) computed by Artur Kawalec, Aug 15 2022 up to 350 decimal digits on basis Juan Arias de Reyna algorithm.
b-file on basis data from email Aug 15 2022 from Artur Kawalec to Artur Jasinski.
Sum_{m>=1} 1/z(m) is a divergent series; see A332614.
Sum_{m>=1} 1/z(m)^2 = 0.0231049931154...; see A332645.
Sum_{m>=1} 1/z(m)^3 = 0.0007295482727...; see A333360.
Sum_{m>=1} 1/z(m)^4 = 0.0000371725992...; see A335815.
Sum_{m>=1} 1/z(m)^5 = 0.0000022311886...; see A335814.
Sum_{m>=1} 1/z(m)^6 = 0.0000001441739...; see A335826.
Sum_{m>=1} 1/(1/4 + z(m)^2) = 0.023095708966...; see A074760.
Sum_{m>=1} 1/(1/2 + i*z(m))^2 + 1/(1/2 - i*z(m))^2 = -0.046154317...; see A245275.
Sum_{m>=1} 1/(1/2 + i*z(m))^3 + 1/(1/2 - i*z(m))^3 = -0.00011115823...; see A245276.
Sum_{r>=1} Sum_{m>=n+1} 1/(z(r)*z(m))^3 = 0.00000619403... see A355283.

Examples

			0.0000022311886995021033286406286918...
		

Crossrefs

Programs

  • Python
    from mpmath import *
    mp.dps = 90
    nprint(secondzeta(5), 78)

Formula

No explicit formula for Sum_{n>=1} 1/z(n)^k is known for odd exponents k (André Voros, personal communication to Artur Jasinski, Mar 09 2020).

A332614 a(n) is the smallest index k such that Sum_{m=1..k} 1/z(m) > n where z(m) is the imaginary part of the m-th nontrivial zero of the Riemann zeta function, n=0,1,2,...

Original entry on oeis.org

1, 93, 621, 2437, 7438, 19490, 45996, 100462, 206617, 404855, 762155, 1387088, 2452209, 4227039, 7126088, 11778044, 19124514, 30559702, 48126380, 74788784, 114809974, 174270215, 261774713, 389414312, 574062463, 839117171, 1216829213, 1751399577, 2503082172, 3553595368
Offset: 0

Views

Author

Artur Jasinski, Feb 17 2020

Keywords

Comments

Because series Sum_{m>=1} 1/z(m) is divergent this sequence is infinite.
Sum_{m>=1} 1/z(m)^2 = 0.0231049931...; see A332645.
Sum_{m>=1} 1/(1/4 + z(m)^2) = 0.023095708966... see A074760.
Sum_{m>=1} 1/(1/2 + i*z(m))^2 + 1/(1/2 - i*z(m))^2 = -0.046154317... see A245275.
Sum_{m>=1} 1/(1/2 + i*z(m))^3 + 1/(1/2 - i*z(m))^3 = -0.00011115823... see A245276.
a(11)-a(39) computed by David Platt, Mar 20 2020.

Examples

			a(0)=1 because 1/z(1) = 0.070747749954285585596 > 0
a(1)=93 because Sum_{m=1..93} 1/z(m) = 1.00082895080028509266 > 1
a(2)=621 because Sum_{m=1..621} 1/z(m) = 2.00017203211984838994 > 2.
		

Crossrefs

Programs

  • Mathematica
    aa = {}; kk = 0; b = 0; Do[b = b + N[1/Im[ZetaZero[n]], 30];
    If[b > kk, AppendTo[aa, n]; kk = kk + 1];, {n, 1, 1000000}]; aa

Extensions

More terms from Artur Jasinski, Feb 21 2020
Showing 1-10 of 19 results. Next