A104585 a(n) = (1/2) * ( 3*n^2 - n*(-1)^n ).
0, 2, 5, 15, 22, 40, 51, 77, 92, 126, 145, 187, 210, 260, 287, 345, 376, 442, 477, 551, 590, 672, 715, 805, 852, 950, 1001, 1107, 1162, 1276, 1335, 1457, 1520, 1650, 1717, 1855, 1926, 2072, 2147, 2301, 2380, 2542, 2625, 2795, 2882, 3060, 3151, 3337, 3432, 3626
Offset: 0
Keywords
Examples
a(5) = 40 = A005449(5), a second pentagonal number. a(6) = 51 = A000326(6), a pentagonal number.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Wikipedia, Pentagonal number theorem.
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Programs
-
Magma
I:=[0, 2, 5, 15, 22]; [n le 5 select I[n] else Self(n-1)+2*Self(n-2)-2*Self(n-3)-Self(n-4)+Self(n-5): n in [1..60]]; // Vincenzo Librandi, Apr 04 2013
-
Mathematica
Table[(1/2) (3 n^2 - n (-1)^n), {n, 0, 100}] (* Vincenzo Librandi, Apr 04 2013 *) LinearRecurrence[{1,2,-2,-1,1},{0,2,5,15,22},50] (* Harvey P. Dale, Sep 14 2015 *)
Formula
a(n) = (1/2) * ( 3*n^2 - n*(-1)^n ). - Ralf Stephan, Nov 13 2010
G.f.: x*(2+3*x+6*x^2+x^3)/(1-x)^3/(1+x)^2. - Colin Barker, Feb 13 2012
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5). - Vincenzo Librandi, Apr 04 2013
From Amiram Eldar, Feb 22 2022: (Start)
Sum_{n>=1} 1/a(n) = 4*log(2) - Pi/sqrt(3).
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*Pi/sqrt(3) - 3*log(3). (End)
Extensions
More terms from Colin Barker, Feb 13 2012
Better name, using formula from Ralf Stephan, Joerg Arndt, Sep 17 2013
Comments