cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A319384 a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5), a(0)=1, a(1)=5, a(2)=9, a(3)=21, a(4)=29.

Original entry on oeis.org

1, 5, 9, 21, 29, 49, 61, 89, 105, 141, 161, 205, 229, 281, 309, 369, 401, 469, 505, 581, 621, 705, 749, 841, 889, 989, 1041, 1149, 1205, 1321, 1381, 1505, 1569, 1701, 1769, 1909, 1981, 2129, 2205, 2361, 2441, 2605, 2689, 2861, 2949, 3129, 3221, 3409, 3505, 3701, 3801, 4005, 4109, 4321, 4429, 4649, 4761, 4989, 5105, 5341, 5461
Offset: 0

Views

Author

Paul Curtz, Sep 18 2018

Keywords

Comments

The two bisections A136392(n+1)=1,9,29,61, ... and A201279(n)=5,21,49, ... are in the hexagonal spiral based on 2*n+1:
.
67--65--63--61
/ \
69 33--31--29 59
/ / \ \
71 35 11---9 27 57
/ / / \ \ \
73 37 13 1 7 25 55
/ / / / / /
39 15 3---5 23 53
\ \ / /
41 17--19--21 51
\ /
43--45--47--49
.
A201279(n) - A136892(n) = 20*n.

Crossrefs

In the spiral: A003154(n+1), A080859, A126587, A136392, A201279, A227776.
Partial sums of A382154.

Programs

  • Magma
    [(6*n^2 + 6*n + 5 - (2*n + 1)*(-1)^n)/4 : n in [0..50]]; // Wesley Ivan Hurt, Jan 19 2021
    
  • Mathematica
    Table[(6 n^2 + 6 n + 5 - (2 n + 1)*(-1)^n)/4, {n, 0, 80}] (* Wesley Ivan Hurt, Jan 07 2021 *)
  • PARI
    Vec((1 + x^2)*(1 + 4*x + x^2) / ((1 - x)^3*(1 + x)^2) + O(x^50)) \\ Colin Barker, Jun 05 2019
    
  • Python
    def A319384(n): return (n*(3*n+4)+3 if n&1 else n*(3*n+2)+2)>>1 # Chai Wah Wu, Mar 25 2025

Formula

a(2*n) = A136392(n+1), a(2*n+1) = A201279(n).
a(-n) = a(n).
a(2*n) + a(2*n+1) = 6*A001844(n).
a(n) = (6*n^2 + 6*n + 5 - (2*n + 1)*(-1)^n)/4. - Wesley Ivan Hurt, Oct 04 2018
G.f.: (1 + x^2)*(1 + 4*x + x^2) / ((1 - x)^3*(1 + x)^2). - Colin Barker, Jun 05 2019
a(n) = A104585(n) + A032766(n+1). - Alex W. Nowak, Jan 08 2021

Extensions

More terms from N. J. A. Sloane, Mar 23 2025

A104584 a(n) = (1/2) * ( 3*n^2 + n*(-1)^n ).

Original entry on oeis.org

0, 1, 7, 12, 26, 35, 57, 70, 100, 117, 155, 176, 222, 247, 301, 330, 392, 425, 495, 532, 610, 651, 737, 782, 876, 925, 1027, 1080, 1190, 1247, 1365, 1426, 1552, 1617, 1751, 1820, 1962, 2035, 2185, 2262, 2420
Offset: 0

Views

Author

Gary W. Adamson, Mar 17 2005

Keywords

Comments

Previous name was: Pentagonal wave sequence of the first kind.
Odd-indexed terms = A033570, pentagonal numbers with odd index (1, 12, 35, 70, ...). Even-indexed terms = A049453, 2nd pentagonal numbers with even index (0, 7, 26, 57, 100, ...).
Companion sequence A104585 (Pentagonal wave sequence of the second kind), switches odd with even applications and vice versa. The pentagonal wave sequence triangle A104586 has A104584 in odd columns and A104585 in even columns.
Exponents of q in the identity Sum_{n >= 0} ( q^n*Product_{k = 1..n} (1 - q^(4*k-3)) ) = 1 + q - q^7 - q^12 + q^26 + q^35 - - + + .... Compare with Euler's pentagonal number theorem: Product_{n >= 1} (1 - q^n) = 1 - Sum_{n >= 1} ( q^n*Product_{k = 1..n-1} (1 - q^k) ) = 1 - q - q^2 + q^5 + q^7 - q^12 - q^15 + + - - .... - Peter Bala, Dec 03 2020

Examples

			a(5) = 35 = A000326(5).
a(6) = 57 = A005449(6).
		

Crossrefs

Programs

  • Magma
    I:=[0, 1, 7, 12, 26]; [n le 5 select I[n] else Self(n-1)+2*Self(n-2)-2*Self(n-3)-Self(n-4)+Self(n-5): n in [1..50]]; // Vincenzo Librandi, Apr 04 2013
  • Mathematica
    Table[(1/2) (3 n^2 + n (-1)^n), {n, 0, 100}] (* Vincenzo Librandi, Apr 04 2013 *)
    LinearRecurrence[{1,2,-2,-1,1},{0,1,7,12,26},50] (* Harvey P. Dale, Feb 14 2023 *)

Formula

a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5). - Vincenzo Librandi, Apr 04 2013
a(n) = (1/2) * (3*n^2 + n*(-1)^n ). - Ralf Stephan, May 20 2007
G.f. -x*(1+6*x+3*x^2+2*x^3) / ( (1+x)^2*(x-1)^3 ). - R. J. Mathar, Jan 10 2011
From Amiram Eldar, Feb 22 2022: (Start)
Sum_{n>=1} 1/a(n) = 6 - Pi/sqrt(3) - 4*log(2).
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*Pi/sqrt(3) + 3*log(3) - 6. (End)

Extensions

Better name, using formula from Ralf Stephan, Joerg Arndt, Sep 17 2013

A104586 Pentagonal wave sequence triangle.

Original entry on oeis.org

1, 7, 2, 12, 5, 1, 26, 15, 7, 2, 35, 22, 12, 5, 1, 57, 40, 26, 15, 7, 2, 70, 51, 35, 22, 12, 5, 1, 100, 77, 57, 40, 26, 15, 7, 2
Offset: 1

Views

Author

Gary W. Adamson, Mar 17 2005

Keywords

Comments

Row sums = A086500: 1, 9, 18, 50, 75, 147, 196...

Examples

			The first few rows are:
1;
7, 2;
12, 5, 1;
26, 15, 7, 2;
35, 22, 12, 5, 1;
57, 40, 26, 15, 7, 2;
70, 51, 35, 22, 12, 5, 1;
...
		

Crossrefs

Formula

Odd columns are terms of A104584, pentagonal wave sequence of the first kind, (starting with 1): 1, 7, 12, 26, 35, 57, 70... Even columns are terms of A104585, pentagonal wave sequence of the second kind (starting with 2): 2, 5, 15, 22, 40, 51... Odd rows are pentagonal numbers (A000326) starting with "1" at the right. Even rows are second pentagonal numbers (A005449) starting with 2 at the right. The triangle is extracted from a matrix product A * B, A = [1; 1, 2; 1, 2, 1; 1, 2, 1, 2;...], B = [1; 3, 1; 5, 3, 1; 7, 5, 3, 1;...] (both infinite lower triangular matrices, with the rest zeros).
Showing 1-3 of 3 results.