cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A104632 1/n times A104631(n), the coefficient of x^(2n+1) in the expansion of (1+x+x^2+x^3+x^4)^n.

Original entry on oeis.org

1, 2, 6, 20, 73, 281, 1125, 4635, 19525, 83710, 364070, 1602327, 7123041, 31937010, 144255802, 655804649, 2998354717, 13777825186, 63596593430, 294743653360, 1371017707245, 6398580086645, 29952930770185, 140604572777250, 661708404611603, 3121439743413256, 14756658303857332
Offset: 1

Views

Author

T. D. Noe, Mar 17 2005

Keywords

Comments

This sequence may be viewed as a higher-order form of the Motzkin numbers, A001006, which are 1/n times the coefficient of x^(n+1) in the expansion of (1+x+x^2)^n. According to Superseeker, this sequence is the INVERT transform of A104184, which is related to Motzkin numbers also. See A104631 for additional comments.
Alternatively, this sequence corresponds to the number of positive walks with n steps {-2,-1,0,1,2} starting at the origin, ending at altitude 1, and staying strictly above the x-axis. - David Nguyen, Dec 01 2016

Crossrefs

Cf. A005717 (coefficient of x^(n+1) in the expansion of (1+x+x^2)^n).

Programs

  • Mathematica
    f=1; Table[f=Expand[f(x^4+x^3+x^2+x+1)]; Coefficient[f, x, 2n+1]/n, {n, 30}]
    a[ n_] := If[ n < 1, 0, Coefficient[ (1 + x + x^2 + x^3 + x^4)^n, x, 2 n + 1] / n]; (* Michael Somos, Dec 01 2016 *)
  • Maxima
    a(n):=sum((-1)^i*binomial(n,i)*binomial(3*n-5*i,n-1),i,0,(2*n+1)/5)/n; /* Vladimir Kruchinin, Apr 06 2017 */
  • PARI
    a(n) = polcoeff((1+x+x^2+x^3+x^4)^n, 2*n+1)/n \\ Michel Marcus, Sep 24 2016
    

Formula

a(n) = Sum_{i=0..(2*n+1)/5}((-1)^i*binomial(n,i)*binomial(3*n-5*i,n-1))/n. - Vladimir Kruchinin, Apr 06 2017
Conjecture: 2*n*(2*n+1)*(n-1)*a(n) -(n-1)*(19*n^2-19*n+2)*a(n-1) -5*(n-2)*(2*n^2-3*n-1)*a(n-2) +25*n*(n-2)*(n-3)*a(n-3)=0. - R. J. Mathar, Jul 23 2017
Showing 1-1 of 1 results.