cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104777 Integer squares congruent to 1 mod 6.

Original entry on oeis.org

1, 25, 49, 121, 169, 289, 361, 529, 625, 841, 961, 1225, 1369, 1681, 1849, 2209, 2401, 2809, 3025, 3481, 3721, 4225, 4489, 5041, 5329, 5929, 6241, 6889, 7225, 7921, 8281, 9025, 9409, 10201, 10609, 11449, 11881, 12769, 13225, 14161, 14641, 15625, 16129
Offset: 1

Views

Author

Michael Somos, Mar 24 2005

Keywords

Comments

Exponents of powers of q in expansion of eta(q^24).
Odd squares not divisible by 3. - Reinhard Zumkeller, Nov 14 2015
From Peter Bala, Jan 03 2025: (Start)
Exponents of q in the expansion of q*Product_{n >= 1} (1 - q^(24*n))^5/(1 - q^(48*n))^2 = q - 5*q^(5^2) + 7*q^(7^2) - 11*q^(11^2) + 13*q^(13^2) - 17*q^(17^2) + 19*q^(19)^2 - + ... (a consequence of the quintuple product identity).
Also, exponents in the expansion of q*Product_{n >= 1} (1 - q^(48*n))^13 / ( (1 - q^(24*n))*(1 - q^(96*n)) )^5 = q + 5*q^(5^2) + 7*q^(7^2) + 11*q^(11^2) - 13*q^(13^2) - 17*q^(17^2) - 19*q^(19^2) - 23*q^(23^2) + + + + - - - - ... (see Oliver, Theorem 1.1). (End)

Examples

			eta(q^24) = q - q^25 - q^49 + q^121 + q^169 - q^289 - q^361 + ...
		

Crossrefs

Disjoint union of A016922 and A016970.

Programs

  • Haskell
    a104777 = (^ 2) . a007310  -- Reinhard Zumkeller, Nov 14 2015
  • Maple
    seq(9*(n-1/2)^2 + 1/4 + (-1)^n * (3*n - 3/2), n = 1 .. 100); # Robert Israel, Dec 12 2014
  • Mathematica
    Select[Range[130]^2,Mod[#,6]==1&] (* or *) LinearRecurrence[{1,2,-2,-1,1},{1,25,49,121,169},50] (* Harvey P. Dale, Mar 09 2017 *)
  • PARI
    {a(n) = (3*n - 1 - n%2)^2};
    

Formula

A033683(a(n)) = 1.
G.f.: ( -1-24*x-22*x^2-24*x^3-x^4 ) / ( (1+x)^2*(x-1)^3 ). - R. J. Mathar, Feb 20 2011
a(n) = A007310(n)^2 = 1 + 24*A001318(n-1).
a(n) = 9*n^2 - 9*n + 5/2 + (-1)^n * (3*n - 3/2). a(n+4) = 2*a(n+2) - a(n) + 72. - Robert Israel, Dec 12 2014
a(n) == 1 (mod 24). - Joerg Arndt, Jan 03 2017
Sum_{n>=1} 1/a(n) = Pi^2/9 (A100044). - Amiram Eldar, Dec 19 2020