A104777 Integer squares congruent to 1 mod 6.
1, 25, 49, 121, 169, 289, 361, 529, 625, 841, 961, 1225, 1369, 1681, 1849, 2209, 2401, 2809, 3025, 3481, 3721, 4225, 4489, 5041, 5329, 5929, 6241, 6889, 7225, 7921, 8281, 9025, 9409, 10201, 10609, 11449, 11881, 12769, 13225, 14161, 14641, 15625, 16129
Offset: 1
Examples
eta(q^24) = q - q^25 - q^49 + q^121 + q^169 - q^289 - q^361 + ...
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Robert J. Lemke Oliver, Eta quotients and theta functions, Advances in Mathematics, Vol. 241, Jul. 2013, pp. 1-17.
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1)
Programs
-
Haskell
a104777 = (^ 2) . a007310 -- Reinhard Zumkeller, Nov 14 2015
-
Maple
seq(9*(n-1/2)^2 + 1/4 + (-1)^n * (3*n - 3/2), n = 1 .. 100); # Robert Israel, Dec 12 2014
-
Mathematica
Select[Range[130]^2,Mod[#,6]==1&] (* or *) LinearRecurrence[{1,2,-2,-1,1},{1,25,49,121,169},50] (* Harvey P. Dale, Mar 09 2017 *)
-
PARI
{a(n) = (3*n - 1 - n%2)^2};
Formula
A033683(a(n)) = 1.
G.f.: ( -1-24*x-22*x^2-24*x^3-x^4 ) / ( (1+x)^2*(x-1)^3 ). - R. J. Mathar, Feb 20 2011
a(n) = 9*n^2 - 9*n + 5/2 + (-1)^n * (3*n - 3/2). a(n+4) = 2*a(n+2) - a(n) + 72. - Robert Israel, Dec 12 2014
a(n) == 1 (mod 24). - Joerg Arndt, Jan 03 2017
Sum_{n>=1} 1/a(n) = Pi^2/9 (A100044). - Amiram Eldar, Dec 19 2020
Comments