cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A171522 Denominator of 1/n^2-1/(n+2)^2.

Original entry on oeis.org

0, 9, 16, 225, 144, 1225, 576, 3969, 1600, 9801, 3600, 20449, 7056, 38025, 12544, 65025, 20736, 104329, 32400, 159201, 48400, 233289, 69696, 330625, 97344, 455625, 132496, 613089, 176400, 808201, 230400, 1046529, 295936, 1334025, 374544, 1677025, 467856
Offset: 0

Views

Author

Paul Curtz, Dec 11 2009

Keywords

Comments

This is the third column in the table of denominators of the hydrogenic spectra (the main diagonal A147560):
0, 0, 0, 0, 0, 0, 0, 0... A000004
1, 4, 9, 16, 25, 36, 49, 64... A000290
1, 36, 16, 100, 9, 196, 64, 324... A061038
1, 144, 225, 12, 441, 576, 81, 900... A061040
1, 400, 144, 784, 64,1296, 400,1936... A061042
1, 900 1225,1600,2025, 100,3025,3600... A061044
1,1764, 576, 324, 225,4356, 48,6084... A061046
1,3136,3969,4900,5929,7056,8281, 196... A061048.

Crossrefs

Cf. A105371. Bisections: A060300, A069075.

Programs

  • Maple
    A171522 := proc(n) if n = 0 then 0 else lcm(n+2,n) ; %^2 ; end if ; end:
    seq(A171522(n),n=0..70) ; # R. J. Mathar, Dec 15 2009
  • Mathematica
    a[n_] := If[EvenQ[n], (n*(n+2))^2/4, (n*(n+2))^2]; Table[a[n], {n, 0, 36}] (* Jean-François Alcover, Jun 13 2017 *)
  • PARI
    concat(0, Vec(x*(x^8+4*x^6+16*x^5+190*x^4+64*x^3+180*x^2+16*x+9) / ((x-1)^5*-(x+1)^5) + O(x^100))) \\ Colin Barker, Nov 05 2014

Formula

a(n) = (A066830(n+1))^2.
a(n) = -((-5+3*(-1)^n)*n^2*(2+n)^2)/8. - Colin Barker, Nov 05 2014
G.f.: x*(x^8+4*x^6+16*x^5+190*x^4+64*x^3+180*x^2+16*x+9) / ((x-1)^5*-(x+1)^5). - Colin Barker, Nov 05 2014

Extensions

Edited and extended by R. J. Mathar, Dec 15 2009

A138112 a(n)=3a(n-1)-4a(n-2)+2a(n-3)-a(n-4), a(0)=a(1)=a(2)=0, a(3)=1, a(4)=3.

Original entry on oeis.org

0, 0, 0, 1, 3, 5, 5, 0, -13, -34, -55, -55, 0, 144, 377, 610, 610, 0, -1597, -4181, -6765, -6765, 0, 17711, 46368, 75025, 75025, 0, -196418, -514229, -832040, -832040, 0, 2178309, 5702887, 9227465, 9227465, 0, -24157817, -63245986, -102334155, -102334155
Offset: 0

Views

Author

Paul Curtz, May 04 2008

Keywords

Comments

Obeys also the recurrence a(n)=5a(n-1)-10a(n-2)+10a(n-3)-5a(n-4)+2a(n-5), so the sequence is identical to its fifth differences (cf. A135356). a(n) = A138110(0,n): if A138110 is interpreted as an array with five rows, this is the top row.
The first differences are represented by A100334(n-1).
The 2nd differences are represented by A103311(n).
The 3rd differences are essentially represented by -A138003(n-2).
The 4th differences are represented by -A105371(n).
A102312 contains the absolute values of the terms which occur in pairs, for example a(5)=a(6)=5=A102312(1), a(10)=a(11)= -55 = -A102312(2).
Inverse BINOMIAL transform yields two zeros followed by A105384. - R. J. Mathar, Jul 04 2008

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x^3/(1-3x+4x^2-2x^3+x^4),{x,0,45}],x] (* or *) LinearRecurrence[{3,-4,2,-1},{0,0,0,1},45] (* Harvey P. Dale, Jun 22 2011 *)

Formula

O.g.f.: x^3/(1-3x+4x^2-2x^3+x^4). - R. J. Mathar, Jul 04 2008

Extensions

Edited and extended by R. J. Mathar, Jul 04 2008

A138003 Binomial transform of 1, 1, 0, -1, -1 (periodically continued).

Original entry on oeis.org

1, 2, 3, 3, 0, -8, -21, -34, -34, 0, 89, 233, 377, 377, 0, -987, -2584, -4181, -4181, 0, 10946, 28657, 46368, 46368, 0, -121393, -317811, -514229, -514229, 0, 1346269, 3524578, 5702887, 5702887, 0, -14930352, -39088169, -63245986, -63245986
Offset: 0

Views

Author

Paul Curtz, May 01 2008

Keywords

Comments

Shares many elements with A103311, as already indicated by the similarity of the two generating functions. First differences are essentially in A105371. - R. J. Mathar, May 02 2008
The longer of the two recurrences ensures that the sequence (like A133476) equals its 5th differences. - R. J. Mathar, May 02 2008

Crossrefs

Cf. A129929.

Programs

  • Mathematica
    LinearRecurrence[{3,-4,2,-1},{1,2,3,3},50] (* Paolo Xausa, Dec 05 2023 *)
  • PARI
    a=[1,2,3,3];for(i=1,99,a=concat(a,3*a[#a]-4*a[#a-1]+2*a[#a-2]-a[#a-3]));a \\ Charles R Greathouse IV, Jun 02 2011

Formula

From R. J. Mathar, May 02 2008: (Start)
O.g.f.: (x^2-x+1)/(x^4-2*x^3+4*x^2-3*x+1).
a(n) = 5a(n-1)-10a(n-2)+10a(n-3)-5a(n-4)+2a(n-5).
a(n) = 3a(n-1)-4a(n-2)+2a(n-3)-a(n-4). (End)

Extensions

Edited by R. J. Mathar, May 02 2008

A138110 Table T(d,n) read column by column: the n-th term in the sequence of the d-th differences of A138112, d=0..4.

Original entry on oeis.org

0, 0, 0, 1, -1, 0, 0, 1, 0, -1, 0, 1, 1, -1, -1, 1, 2, 0, -2, -1, 3, 2, -2, -3, 0, 5, 0, -5, -3, 3, 5, -5, -8, 0, 8, 0, -13, -8, 8, 13, -13, -21, 0, 21, 13, -34, -21, 21, 34, 0, -55, 0, 55, 34, -34, -55, 55, 89, 0, -89, 0, 144, 89, -89, -144, 144, 233, 0, -233, -144, 377, 233, -233, -377, 0, 610, 0, -610, -377, 377
Offset: 0

Views

Author

Paul Curtz, May 04 2008

Keywords

Comments

Ignoring signs, the sequence contains A000045(2)=1 ten times and each of the following Fibonacci numbers A000045(i>2) four times.

Examples

			All 5 rows of the table T(d,n) are:
.0,.0,.0,.1,.3,.5,.5,..0,-13,-34,-55,-55,...0,.144,...
.0,.0,.1,.2,.2,.0,-5,-13,-21,-21,..0,.55,.144,.233,...
.0,.1,.1,.0,-2,-5,-8,.-8,..0,.21,.55,.89,..89,...0,...
.1,.0,-1,-2,-3,-3,.0,..8,.21,.34,.34,..0,.-89,-233,...
-1,-1,-1,-1,.0,.3,.8,.13,.13,..0,-34,-89,-144,-144,...
		

Crossrefs

Formula

T(0,n)=A138112(n). T(d,n)= T(d-1,n+1)-T(d-1,n), d=1..4.
T(1,n)=A100334(n-1). T(2,n)=A103311(n). T(3,n) = -A138003(n-2). T(4,n)= -A105371(n).
sum_(d=0..4) T(d,n)=0 (columns sum to zero).

Extensions

Edited by R. J. Mathar, Jul 04 2008

A171373 Binomial transform of A171372.

Original entry on oeis.org

1, 6, 16, 36, 76, 152, 292, 552, 1052, 2052, 4104, 8344, 17044, 34664, 69904, 139808, 278108, 552268, 1098148, 2189908, 4379816, 8776356, 17596496, 35263836, 70598516, 141197032, 282208592, 563931612, 1127077552, 2253369432, 4506738864, 9015534644
Offset: 0

Views

Author

Paul Curtz, Dec 07 2009

Keywords

Comments

The recurrence shows that the sequence and its successive differences are identical to their fifth differences (see A135356).

Programs

  • Mathematica
    LinearRecurrence[{5,-10,10,-5,2},{1,6,16,36,76},40] (* Harvey P. Dale, Dec 09 2013 *)

Formula

a(n+1)-2*a(n) = 4*A105371(n-1) = 4*A138110(4,n).
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+2*a(n-5).
G.f.: (1+x-4*x^2+6*x^3+x^4)/((1-2*x)*(x^4-2*x^3+4*x^2-3*x+1)).

Extensions

Edited and extended by R. J. Mathar, Dec 15 2009, Mar 02 2010

A171372 a(n) = Numerator of 1/(2*n)^2 - 1/(3*n)^2 for n > 0, a(0) = 1.

Original entry on oeis.org

1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5
Offset: 0

Views

Author

Paul Curtz, Dec 07 2009

Keywords

Comments

The diagonal of a table of numerators of the Rydberg-Ritz spectrum of hydrogen:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... A000012
0, 5, 3, 21, 2, 45, 15, 77, 6, 117, 35, ... A061037
0, 9, 5, 33, 3, 65, 21, 105, 1, 153, 45, ... A061041
0, 13, 7, 5, 4, 85, 1, 133, 10, 7, 55, ... A061045
0, 17, 9, 57, 5, 105, 33, 161, 3, 225, 65, ... A061049
0, 21, 11, 69, 6, 1, 39, 189, 14, 261, 3, ...
0, 25, 13, 1, 7, 145, 5, 217, 1, 11, 85, ...
0, 29, 15, 93, 8, 165, 51, 5, 18, 333, 95, ...
0, 33, 17, 105, 9, 185, 57, 273, 5, 369, 105, ...
0, 37, 19, 13, 10, 205, 7, 301, 22, 5, 115, ...
0, 41, 21, 129, 11, 9, 69, 329, 3, 441, 1, ...
In that respect, constructed similar to A144437.

Crossrefs

Cf. A171373 (binomial transform), A171408, A105371.

Programs

  • Magma
    [1] cat [Numerator(5/(6*n)^2): n in [1..100]]; // G. C. Greubel, Sep 20 2018
  • Mathematica
    Table[If[n==0,1,Numerator[5/(6*n)^2]], {n,0,100}] (* G. C. Greubel, Sep 20 2018 *)
  • PARI
    concat([1], vector(100, n, numerator(5/(6*n)^2))) \\ G. C. Greubel, Sep 20 2018
    

Formula

a(n) = numerator of 5/(6*n)^2 .
Period 5: repeat [1,5,5,5,5].
G.f.: (1 + 5*x + 5*x^2 + 5*x^3 + 5*x^4)/((1-x)*(1 + x + x^2 + x^3 + x^4)).
a(n) = 1 + 4*sign(n mod 5). - Wesley Ivan Hurt, Sep 26 2018
a(n) = (21-8*cos(2*n*Pi/5)-8*cos(4*n*Pi/5))/5. - Wesley Ivan Hurt, Sep 27 2018

Extensions

Edited by R. J. Mathar, Dec 15 2009

A171408 a(n) = A171373(n+1) - 2*A171373(n).

Original entry on oeis.org

4, 4, 4, 4, 0, -12, -32, -52, -52, 0, 136, 356, 576, 576, 0, -1508, -3948, -6388, -6388, 0, 16724, 43784, 70844, 70844, 0, -185472, -485572, -785672, -785672, 0, 2056916, 5385076, 8713236, 8713236, 0, -22811548, -59721408, -96631268, -96631268, 0, 252983944, 662320564
Offset: 0

Views

Author

Paul Curtz, Dec 08 2009

Keywords

Comments

The least significant digits have a period of length 20. Another period (not the same but of the same length, as this a sequence contains negative numbers) is defined reading the sequence modulo 10.

Crossrefs

Formula

a(n)=4*A105371(n-1), n>0.
a(n)= 3*a(n-1) -4*a(n-2) +2*a(n-3) -a(n-4). G.f.: 4*(1-2*x+2*x^2)/(1-3*x+4*x^2-2*x^3+x^4).

Extensions

Edited and extended by R. J. Mathar, Mar 02 2010
Showing 1-7 of 7 results.