A105485
Number of partitions of {1...n} containing 3 strings of 3 consecutive integers, where each string is counted within a block and a string of more than 3 consecutive integers are counted three at a time.
Original entry on oeis.org
1, 2, 10, 44, 215, 1112, 6141, 35968, 222659, 1451770, 9939702, 71265036, 533744979, 4166533826, 33831424388, 285213338300, 2492259168784, 22538314947452, 210639529104328, 2031804667766532, 20203377516199587, 206861906112012524, 2178715175981722659
Offset: 5
a(6)=2 because the partitions of {1,...,6} with 3 strings of 3 consecutive integers are 12345/6, 1/23456.
-
c := proc(n,k,r) option remember ; local j ; if r =0 then add(binomial(n-j,j)*combinat[stirling2](n-j-1,k-1),j=0..floor(n/2)) ; else if r <0 or r > n-k-1 then RETURN(0) fi ; if n <1 then RETURN(0) fi ; if k <1 then RETURN(0) fi ; RETURN( c(n-1,k-1,r)+(k-1)*c(n-1,k,r)+c(n-2,k-1,r)+(k-1)*c(n-2,k,r) +c(n-1,k,r-1)-c(n-2,k-1,r-1)-(k-1)*c(n-2,k,r-1) ) ; fi ; end: A105485 := proc(n) local k ; add(c(n,k,3),k=1..n) ; end: for n from 5 to 28 do printf("%d, ",A105485(n)) ; od ; # R. J. Mathar, Feb 20 2007
-
S2[_, -1] = 0;
S2[n_, k_] = StirlingS2[n, k];
c[n_, k_, r_] := c[n, k, r] = Which[r == 0, Sum[Binomial[n - j, j]*S2[n - j - 1, k - 1], {j, 0, Floor[n/2]}], r < 0 || r > n - k - 1, 0, n < 1, 0, k < 1, 0, True, c[n - 1, k - 1, r] + (k - 1)*c[n - 1, k, r] + c[n - 2, k - 1, r] + (k - 1)*c[n - 2, k, r] + c[n - 1, k, r - 1] - c[n - 2, k - 1, r - 1] - (k - 1)*c[n - 2, k, r - 1]];
A105485[n_] := Sum[c[n, k, 3], {k, 1, n}];
Table[A105485[n], {n, 5, 28}] (* Jean-François Alcover, May 10 2023, after R. J. Mathar *)
A105481
Number of partitions of {1...n} containing 4 pairs of consecutive integers, where each pair is counted within a block and a string of more than 2 consecutive integers are counted two at a time.
Original entry on oeis.org
1, 5, 30, 175, 1050, 6552, 42630, 289410, 2049300, 15120105, 116090975, 926248050, 7668746540, 65793760060, 584151925320, 5360347320420, 50776288702215, 495946245776940, 4989391837053085, 51648932225779735, 549620905409062872
Offset: 5
a(6) = 5 because the partitions of {1,2,3,4,5,6} with 4 pairs of consecutive integers are 12345/6,1234/56,123/456,12/3456,1/23456.
- A. O. Munagi, Set Partitions with Successions and Separations, Int. J. Math and Math. Sc. 2005, no. 3 (2005), 451-463.
A105487
Number of partitions of {1...n} containing 5 strings of 3 consecutive integers, where each string is counted within a block and a string of more than 3 consecutive integers are counted three at a time.
Original entry on oeis.org
1, 2, 12, 56, 297, 1632, 9531, 58634, 379371, 2574254, 18276457, 135463074, 1046041114, 8399533370, 70013963418, 604840440328, 5407301690915, 49958478263502, 476403955991034, 4683463406478004, 47414166201239781, 493803423334040824, 5285548108715948453
Offset: 7
a(8) = 2 because the partitions of {1,...,8} with 5 strings of 3 consecutive integers are 1234567/8, 1/2345678.
-
c := proc(n,k,r) option remember ; local j ; if r =0 then add(binomial(n-j,j)*combinat[stirling2](n-j-1,k-1),j=0..floor(n/2)) ; else if r <0 or r > n-k-1 then RETURN(0) fi ; if n <1 then RETURN(0) fi ; if k <1 then RETURN(0) fi ; RETURN( c(n-1,k-1,r)+(k-1)*c(n-1,k,r)+c(n-2,k-1,r)+(k-1)*c(n-2,k,r) +c(n-1,k,r-1)-c(n-2,k-1,r-1)-(k-1)*c(n-2,k,r-1) ) ; fi ; end: A105487 := proc(n) local k ; add(c(n,k,5),k=1..n) ; end: for n from 7 to 30 do printf("%d, ",A105487(n)) ; od ; # R. J. Mathar, Feb 20 2007
-
S2[_, -1] = 0;
S2[n_, k_] = StirlingS2[n, k];
c[n_, k_, r_] := c[n, k, r] = Which[
r == 0, Sum[Binomial[n - j, j]*S2[n - j - 1, k - 1],
{j, 0, Floor[n/2]}],
r < 0 || r > n - k - 1, 0,
n < 1, 0,
k < 1, 0,
True, c[n - 1, k - 1, r] +
(k - 1)*c[n - 1, k, r] +
c[n - 2, k - 1, r] +
(k - 1)*c[n - 2, k, r] +
c[n - 1, k, r - 1] -
c[n - 2, k - 1, r - 1] -
(k - 1)*c[n - 2, k, r - 1]];
A105487[n_] := Sum[c[n, k, 5], {k, 1, n}];
Table[A105487[n], {n, 7, 30}] (* Jean-François Alcover, May 10 2023, after R. J. Mathar *)
A175757
Triangular array read by rows: T(n,k) is the number of blocks of size k in all set partitions of {1,2,...,n}.
Original entry on oeis.org
1, 2, 1, 6, 3, 1, 20, 12, 4, 1, 75, 50, 20, 5, 1, 312, 225, 100, 30, 6, 1, 1421, 1092, 525, 175, 42, 7, 1, 7016, 5684, 2912, 1050, 280, 56, 8, 1, 37260, 31572, 17052, 6552, 1890, 420, 72, 9, 1, 211470, 186300, 105240, 42630, 13104, 3150, 600, 90, 10, 1
Offset: 1
The set {1,2,3} has 5 partitions, {{1, 2, 3}}, {{2, 3}, {1}}, {{1, 3}, {2}}, {{1, 2}, {3}}, and {{2}, {3}, {1}}, and there are a total of 3 blocks of size 2, so T(3,2)=3.
Triangle begins:
1;
2, 1;
6, 3, 1;
20, 12, 4, 1;
75, 50, 20, 5, 1;
312, 225, 100, 30, 6, 1;
...
-
b:= proc(n) option remember; `if`(n=0, [1, 0],
add((p-> p+[0, p[1]*x^j])(b(n-j)*
binomial(n-1, j-1)), j=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n)[2]):
seq(T(n), n=1..12); # Alois P. Heinz, Apr 24 2017
-
Table[Table[Length[Select[Level[SetPartitions[m],{2}],Length[#]==n&]],{n,1,m}],{m,1,10}]//Grid
A105491
Number of partitions of {1...n} containing 5 detached pairs of consecutive integers, i.e., partitions in which only 1- or 2-strings of consecutive integers can appear in a block and there are exactly five 2-strings.
Original entry on oeis.org
15, 312, 4263, 49112, 521640, 5329044, 53580450, 537427440, 5422899339, 55344162874, 573270663966, 6040762924560, 64851119605636, 709986204480672, 7931189102016852, 90430835147203728, 1052534895931584828
Offset: 10
a(10)=15; the enumerated 15 partitions of {1,...,10} with 5 detached pairs of consecutive integers include (1,2,5,6,9,10)(3,4,7,8) and (1,2,9,10)(3,4,7,8)(5,6).
- A. O. Munagi, Set Partitions with Successions and Separations, Int. J. Math and Math. Sc. 2005, no. 3 (2005), 451-463.
Showing 1-5 of 5 results.
Comments