A070071
a(n) = n*B(n), where B(n) are the Bell numbers, A000110.
Original entry on oeis.org
0, 1, 4, 15, 60, 260, 1218, 6139, 33120, 190323, 1159750, 7464270, 50563164, 359377681, 2672590508, 20744378175, 167682274352, 1408702786668, 12277382510862, 110822101896083, 1034483164707440, 9972266139291771, 99147746245841106, 1015496134666939958
Offset: 0
-
[n*Bell(n): n in [0..25]]; // Vincenzo Librandi, Mar 15 2014
-
with(combinat): a:=n->sum(numbcomb (n,0)*bell(n), j=1..n): seq(a(n), n=0..21); # Zerinvary Lajos, Apr 25 2007
with(combinat): a:=n->sum(bell(n), j=1..n): seq(a(n), n=0..21); # Zerinvary Lajos, Apr 25 2007
a:=n->sum(sum(Stirling2(n, k), j=1..n), k=1..n): seq(a(n), n=0..21); # Zerinvary Lajos, Jun 28 2007
-
a[n_] := n!*Coefficient[Series[x E^(E^x+x-1), {x, 0, n}], x, n]
Table[Sum[BellB[n, 1], {i, 1, n}], {n, 0, 21}] (* Zerinvary Lajos, Jul 16 2009 *)
Table[n*BellB[n], {n, 0, 20}] (* Vaclav Kotesovec, Mar 13 2014 *)
-
a(n)=local(t); if(n<0,0,t=exp(x+O(x^n)); n!*polcoeff(x*t*exp(t-1),n))
-
[bell_number(n)*n for n in range(22) ] # Zerinvary Lajos, Mar 14 2009
A105480
Number of partitions of {1...n} containing 3 pairs of consecutive integers, where each pair is counted within a block and a string of more than 2 consecutive integers are counted two at a time.
Original entry on oeis.org
1, 4, 20, 100, 525, 2912, 17052, 105240, 683100, 4652340, 33168850, 246999480, 1917186635, 15480884720, 129811538960, 1128494172720, 10155257740443, 94465951576560, 907162152191470, 8982422995787780, 91603484234843812
Offset: 4
a(5) = 4 because the partitions of {1,2,3,4,5} with 3 pairs of consecutive integers are 1234/5,123/45,12/345,1/2345.
A105482
Number of partitions of {1...n} containing 5 pairs of consecutive integers, where each pair is counted within a block and a string of more than 2 consecutive integers are counted two at a time.
Original entry on oeis.org
1, 6, 42, 280, 1890, 13104, 93786, 694584, 5328180, 42336294, 348272925, 2963993760, 26073738236, 236857536216, 2219777316216, 21441389281680, 213260412549303, 2182163481418536, 22951202450444191, 247914874683742728
Offset: 6
a(7) = 6 because the partitions of {1,2,3,4,5,6,7} with 5 pairs of consecutive integers are 123456/7,12345/67,1234/567,123/4567,12/34567,1/234567.
A105490
Number of partitions of {1...n} containing 4 detached pairs of consecutive integers, i.e., partitions in which only 1- or 2-strings of consecutive integers can appear in a block and there are exactly four 2-strings.
Original entry on oeis.org
5, 75, 780, 7105, 61390, 521640, 4440870, 38271750, 335892150, 3012721855, 27672081437, 260577574530, 2516984551900, 24942738309860, 253566501600240, 2643729700672284, 28259635983501165, 309569087038701420
Offset: 8
a(8) = 5 because the partitions of {1,...,8} with 4 detached pairs of consecutive integers are 1256/3478, 1256/34/78, 12/3478/56, 1278/34/56, 12/34/56/78.
-
seq(binomial(n-4, 4)*combinat[bell](n-5), n=8..28);
with(combinat): a:=n->sum(numbcomb(n-5, 3)*bell(n-5)/4, j=0..n-5): seq(a(n), n=8..28); # Zerinvary Lajos, Apr 25 2007
A175757
Triangular array read by rows: T(n,k) is the number of blocks of size k in all set partitions of {1,2,...,n}.
Original entry on oeis.org
1, 2, 1, 6, 3, 1, 20, 12, 4, 1, 75, 50, 20, 5, 1, 312, 225, 100, 30, 6, 1, 1421, 1092, 525, 175, 42, 7, 1, 7016, 5684, 2912, 1050, 280, 56, 8, 1, 37260, 31572, 17052, 6552, 1890, 420, 72, 9, 1, 211470, 186300, 105240, 42630, 13104, 3150, 600, 90, 10, 1
Offset: 1
The set {1,2,3} has 5 partitions, {{1, 2, 3}}, {{2, 3}, {1}}, {{1, 3}, {2}}, {{1, 2}, {3}}, and {{2}, {3}, {1}}, and there are a total of 3 blocks of size 2, so T(3,2)=3.
Triangle begins:
1;
2, 1;
6, 3, 1;
20, 12, 4, 1;
75, 50, 20, 5, 1;
312, 225, 100, 30, 6, 1;
...
-
b:= proc(n) option remember; `if`(n=0, [1, 0],
add((p-> p+[0, p[1]*x^j])(b(n-j)*
binomial(n-1, j-1)), j=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n)[2]):
seq(T(n), n=1..12); # Alois P. Heinz, Apr 24 2017
-
Table[Table[Length[Select[Level[SetPartitions[m],{2}],Length[#]==n&]],{n,1,m}],{m,1,10}]//Grid
Showing 1-5 of 5 results.
Comments