cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A070071 a(n) = n*B(n), where B(n) are the Bell numbers, A000110.

Original entry on oeis.org

0, 1, 4, 15, 60, 260, 1218, 6139, 33120, 190323, 1159750, 7464270, 50563164, 359377681, 2672590508, 20744378175, 167682274352, 1408702786668, 12277382510862, 110822101896083, 1034483164707440, 9972266139291771, 99147746245841106, 1015496134666939958
Offset: 0

Views

Author

Karol A. Penson, Apr 19 2002

Keywords

Comments

a(n) is the total number of successions among all partitions of {1,2,...,n+1}; a succession is a pair (i,i+1) of consecutive integers lying in a block. For example, a(3)=15 because {1,2,3,4} has 6 partitions with 1 succession - 1/2/34, 1/23/4, 12/3/4, 14/23, 134/2, 124/3, 3 partitions with 2 successions - 1/234, 123/4, 12/34 and 1 partition with 3 successions - 1234. Thus a(3) = 6*1 + 3*2 + 1*3 = 15. - Augustine O. Munagi, Jul 01 2008
a(n) is the number of occurrences of integers in a list of all partitions of the set {1,...,n}. For example, the list 123, 1/23, 2/13, 3/12, 1/2/3 of all partitions of the set {1,2,3} requires 15 occurrences of integers each belonging to that set. [From Michael Hardy (hardy(AT)math.umn.edu), Nov 08 2008]
The bijection between the two foregoing characterizations is as follows: Fix x in {1,2,...,n} and associate x with the succession (x,x+1) which appears in some partitions of {1,2,...,n+1}. Replace x,x+1 by x and partition the n-set {1,2,...,x,x+2,...,n+1}, giving B(n) partitions. Thus the succession (x,x+1) occurs among partitions of {1,2,...,n+1} exactly B(n) times. - Augustine O. Munagi, Jun 02 2010

Crossrefs

Programs

  • Magma
    [n*Bell(n): n in [0..25]]; // Vincenzo Librandi, Mar 15 2014
  • Maple
    with(combinat): a:=n->sum(numbcomb (n,0)*bell(n), j=1..n): seq(a(n), n=0..21); # Zerinvary Lajos, Apr 25 2007
    with(combinat): a:=n->sum(bell(n), j=1..n): seq(a(n), n=0..21); # Zerinvary Lajos, Apr 25 2007
    a:=n->sum(sum(Stirling2(n, k), j=1..n), k=1..n): seq(a(n), n=0..21); # Zerinvary Lajos, Jun 28 2007
  • Mathematica
    a[n_] := n!*Coefficient[Series[x E^(E^x+x-1), {x, 0, n}], x, n]
    Table[Sum[BellB[n, 1], {i, 1, n}], {n, 0, 21}] (* Zerinvary Lajos, Jul 16 2009 *)
    Table[n*BellB[n], {n, 0, 20}] (* Vaclav Kotesovec, Mar 13 2014 *)
  • PARI
    a(n)=local(t); if(n<0,0,t=exp(x+O(x^n)); n!*polcoeff(x*t*exp(t-1),n))
    
  • Sage
    [bell_number(n)*n for n in range(22) ] # Zerinvary Lajos, Mar 14 2009
    

Formula

E.g.f: x*exp(x)*exp(exp(x)-1).
Sum_{k=1..n} n*binomial(n-1, k-1)*Bell(n-k), n >= 2. - Zerinvary Lajos, Nov 22 2006
a(n) ~ n^(n+1) * exp(n/LambertW(n)-1-n) / (sqrt(1+LambertW(n)) * LambertW(n)^n). - Vaclav Kotesovec, Mar 13 2014
a(n) = Sum_{k=1..n} k * A175757(n,k). - Alois P. Heinz, Mar 03 2020
a(n) = Sum_{j=0..n} n * Stirling2(n,j). - Detlef Meya, Apr 11 2024

A105480 Number of partitions of {1...n} containing 3 pairs of consecutive integers, where each pair is counted within a block and a string of more than 2 consecutive integers are counted two at a time.

Original entry on oeis.org

1, 4, 20, 100, 525, 2912, 17052, 105240, 683100, 4652340, 33168850, 246999480, 1917186635, 15480884720, 129811538960, 1128494172720, 10155257740443, 94465951576560, 907162152191470, 8982422995787780, 91603484234843812
Offset: 4

Views

Author

Augustine O. Munagi, Apr 10 2005

Keywords

Examples

			a(5) = 4 because the partitions of {1,2,3,4,5} with 3 pairs of consecutive integers are 1234/5,123/45,12/345,1/2345.
		

Crossrefs

Programs

  • Maple
    seq(binomial(n-1,3)*combinat[bell](n-4),n=4..25);

Formula

a(n) = binomial(n-1, 3)*Bell(n-4), the case r = 3 in the general case of r pairs: c(n, r) = binomial(n-1, r)*B(n-r-1).
O.g.f. for c(n,r) is exp(-1)*Sum(x^(r+1)/(n!*(1-n*x)^(r+1)),n=0..infinity). - Vladeta Jovovic, Feb 05 2008
Let A be the upper Hessenberg matrix of order n defined by: A[i,i-1]=-1, A[i,j]=binomial(j-1,i-1), (i<=j), and A[i,j]=0 otherwise. Then, for n>=3, a(n+1)=(-1)^(n-3)*coeff(charpoly(A,x),x^3). [Milan Janjic, Jul 08 2010]
E.g.f.: (1/3!) * Integral (x^3 * exp(exp(x) - 1)) dx. - Ilya Gutkovskiy, Jul 10 2020

A105482 Number of partitions of {1...n} containing 5 pairs of consecutive integers, where each pair is counted within a block and a string of more than 2 consecutive integers are counted two at a time.

Original entry on oeis.org

1, 6, 42, 280, 1890, 13104, 93786, 694584, 5328180, 42336294, 348272925, 2963993760, 26073738236, 236857536216, 2219777316216, 21441389281680, 213260412549303, 2182163481418536, 22951202450444191, 247914874683742728
Offset: 6

Views

Author

Augustine O. Munagi, Apr 10 2005

Keywords

Examples

			a(7) = 6 because the partitions of {1,2,3,4,5,6,7} with 5 pairs of consecutive integers are 123456/7,12345/67,1234/567,123/4567,12/34567,1/234567.
		

Crossrefs

Programs

  • Maple
    seq(binomial(n-1,5)*combinat[bell](n-6),n=6..26);

Formula

a(n) = binomial(n-1, 5)*Bell(n-6), the case r = 5 in the general case of r pairs: c(n, r) = binomial(n-1, r)*B(n-r-1).
Let A be the upper Hessenberg matrix of order n defined by: A[i,i-1]=-1, A[i,j]=binomial(j-1,i-1), (i<=j), and A[i,j]=0 otherwise. Then, for n>=5, a(n+1)=(-1)^(n-5)*coeff(charpoly(A,x),x^5). [Milan Janjic, Jul 08 2010]
E.g.f.: (1/5!) * Integral (x^5 * exp(exp(x) - 1)) dx. - Ilya Gutkovskiy, Jul 10 2020

A105490 Number of partitions of {1...n} containing 4 detached pairs of consecutive integers, i.e., partitions in which only 1- or 2-strings of consecutive integers can appear in a block and there are exactly four 2-strings.

Original entry on oeis.org

5, 75, 780, 7105, 61390, 521640, 4440870, 38271750, 335892150, 3012721855, 27672081437, 260577574530, 2516984551900, 24942738309860, 253566501600240, 2643729700672284, 28259635983501165, 309569087038701420
Offset: 8

Views

Author

Augustine O. Munagi, Apr 10 2005

Keywords

Comments

Number of partitions enumerated by A105481 in which the maximal length of consecutive integers in a block is 2.
With offset 4t, number of partitions of {1...N} containing 4 detached strings of t consecutive integers, where N = n + 4j, t = 2 + j, j = 0, 1, 2, ..., i.e., partitions of {1,...,N} in which only v-strings of consecutive integers can appear in a block, where v=1 or v=t and there are exactly four t-strings.

Examples

			a(8) = 5 because the partitions of {1,...,8} with 4 detached pairs of consecutive integers are 1256/3478, 1256/34/78, 12/3478/56, 1278/34/56, 12/34/56/78.
		

Crossrefs

Programs

  • Maple
    seq(binomial(n-4, 4)*combinat[bell](n-5), n=8..28);
    with(combinat): a:=n->sum(numbcomb(n-5, 3)*bell(n-5)/4, j=0..n-5): seq(a(n), n=8..28); # Zerinvary Lajos, Apr 25 2007

Formula

a(n) = binomial(n-4, 4)*Bell(n-5), which is the case r=4 in the general case of r pairs, d(n,r) = binomial(n-r, r)*Bell(n-r-1), which is the case t=2 of the general formula d(n,r,t) = binomial(n-r*(t-1), r)*Bell(n-r*(t-1)-1).

A175757 Triangular array read by rows: T(n,k) is the number of blocks of size k in all set partitions of {1,2,...,n}.

Original entry on oeis.org

1, 2, 1, 6, 3, 1, 20, 12, 4, 1, 75, 50, 20, 5, 1, 312, 225, 100, 30, 6, 1, 1421, 1092, 525, 175, 42, 7, 1, 7016, 5684, 2912, 1050, 280, 56, 8, 1, 37260, 31572, 17052, 6552, 1890, 420, 72, 9, 1, 211470, 186300, 105240, 42630, 13104, 3150, 600, 90, 10, 1
Offset: 1

Views

Author

Geoffrey Critzer, Dec 04 2010

Keywords

Comments

The row sums of this triangle equal A005493. Equals A056857 without its leftmost column.
T(n,k) = binomial(n,k)*B(n-k) where B is the Bell number.

Examples

			The set {1,2,3} has 5 partitions, {{1, 2, 3}}, {{2, 3}, {1}}, {{1, 3}, {2}}, {{1, 2}, {3}}, and {{2}, {3}, {1}}, and there are a total of 3 blocks of size 2, so T(3,2)=3.
Triangle begins:
    1;
    2,   1;
    6,   3,   1;
   20,  12,   4,  1;
   75,  50,  20,  5, 1;
  312, 225, 100, 30, 6, 1;
  ...
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, [1, 0],
          add((p-> p+[0, p[1]*x^j])(b(n-j)*
          binomial(n-1, j-1)), j=1..n))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n)[2]):
    seq(T(n), n=1..12);  # Alois P. Heinz, Apr 24 2017
  • Mathematica
    Table[Table[Length[Select[Level[SetPartitions[m],{2}],Length[#]==n&]],{n,1,m}],{m,1,10}]//Grid

Formula

E.g.f. for column k is x^k/k!*exp(exp(x)-1).
Sum_{k=1..n} k * T(n,k) = A070071(n). - Alois P. Heinz, Mar 03 2020
Showing 1-5 of 5 results.