cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A020501 Cyclotomic polynomials at x=-2.

Original entry on oeis.org

-2, -3, -1, 3, 5, 11, 7, 43, 17, 57, 31, 683, 13, 2731, 127, 331, 257, 43691, 73, 174763, 205, 5419, 2047, 2796203, 241, 1016801, 8191, 261633, 3277, 178956971, 151, 715827883, 65537, 1397419, 131071, 24214051
Offset: 0

Views

Author

Keywords

Comments

a(0) depends on the definition of the 0th cyclotomic polynomial; Maple defines it as x, but Mathematica defines it as 1. - T. D. Noe, Jul 23 2008 [a(0) = x is correct. - N. J. A. Sloane, Aug 01 2008]
A020501[2n] = A019320[n] for all odd n > 1. (Because if m > 1 is odd, then Phi_2m(x) = Phi_m(-x) as demonstrated by Bloom). - Antti Karttunen, Aug 02 2001

Crossrefs

Programs

  • Maple
    with(numtheory,cyclotomic); f := n->subs(x=-2,cyclotomic(n,x)); seq(f(i),i=0..64);
  • Mathematica
    Join[{-2}, Cyclotomic[Range[50], -2]] (* Paolo Xausa, Feb 26 2024 *)
  • PARI
    a(n) = if (n, polcyclo(n, -2), -2); \\ Michel Marcus, Mar 05 2016

A253807 Primitive part of A006190(n), n >= 1.

Original entry on oeis.org

1, 3, 10, 11, 109, 12, 1189, 119, 1297, 131, 141481, 118, 1543321, 1429, 15445, 14159, 183642229, 1299, 2003229469, 14041, 1837837, 170039, 238367471761, 14158, 23854956949, 1854841, 2186871697, 1670761, 309400794703549
Offset: 1

Views

Author

Wolfdieter Lang, Jan 19 2015

Keywords

Comments

A006190(n) = Product_{k divides n} a(k), n >= 1.

Crossrefs

Programs

  • Mathematica
    (* b = A006190 *) b[0] = 0; b[1] = 1; b[n_] := b[n] = 3*b[n-1] + b[n-2]; a[n_] := Product[b[d]^MoebiusMu[n/d], {d, Divisors[n]}]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Jan 20 2015 *)

Formula

a(n) = ((3-sqrt(13))/2)^phi(n)*cyclotomic(n, -(11 - 3*sqrt13)/2) for n >= 1 and a(1) = 1, where phi is Euler's totient A000010 and the coefficient table for the cyclotomic polynomials is given in A013595.
a(n) = Product_{d|n} A006190(d)^mu(n/d), where mu = A008683, n >= 1.

A105604 Sylvester dividends for Jacobsthal numbers.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 5, 3, 11, 1, 105, 1, 43, 33, 85, 1, 1197, 1, 1705, 129, 683, 1, 23205, 11, 2731, 171, 27305, 1, 2370291, 1, 21845, 2049, 43691, 473, 5679765, 1, 174763, 8193, 5941925, 1, 621456339, 1, 6990505, 622611, 2796203, 1, 1437248085, 43, 346729141, 131073, 111848105, 1, 22861753173, 7513, 1521134245
Offset: 1

Views

Author

Paul Barry, Apr 15 2005

Keywords

Comments

Divide each Jacobsthal number by its primitive part.

Crossrefs

Programs

Formula

a(n) = A001045(n)/A105603(n).

Extensions

More terms from Antti Karttunen, Nov 01 2017
Showing 1-3 of 3 results.