cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A166619 Primes in A105720.

Original entry on oeis.org

5, 67, 1523, 1987, 3119, 9323, 11783, 14551, 21019, 42929, 108191, 177337, 194527, 225227, 244753, 251417, 265123, 301123, 308569, 450503, 507523, 622067, 655351, 772789, 835249, 860891, 900241, 940403, 995611, 1141241, 1171789, 1534727
Offset: 1

Views

Author

Zak Seidov, Oct 18 2009

Keywords

Crossrefs

Cf. A166620 (Positions of primes in A105720), A105720.

A166620 Positions of primes in A105720.

Original entry on oeis.org

1, 4, 16, 18, 22, 36, 40, 44, 52, 72, 110, 138, 144, 154, 160, 162, 166, 176, 178, 212, 224, 246, 252, 272, 282, 286, 292, 298, 306, 326, 330, 374, 386, 420, 428, 442, 446, 468, 472, 478, 482, 488, 498, 512, 518, 524, 532, 534, 550, 556, 564, 586, 602, 628
Offset: 1

Views

Author

Zak Seidov, Oct 18 2009

Keywords

Crossrefs

Cf. A166619 (Primes in A105720), A105720

Programs

A166708 Squares in A105720.

Original entry on oeis.org

36, 169, 247590225
Offset: 1

Views

Author

Zak Seidov, Oct 18 2009

Keywords

Examples

			36=6^2=A105720(3),
169=13^2=A105720(6),
247590225=15735^2=A105720(4072)
No more terms up to 35746494200563714=A105720(34769014).
		

Crossrefs

Programs

  • Mathematica
    a=5;Do[a=a-Prime[n]+Prime[2n+1]+Prime[2n+2];If[IntegerQ[Sqrt[a]],Print[{a,n+1 }]],{n,1,10^8}];

A031215 Even-indexed primes: a(n) = prime(2n).

Original entry on oeis.org

3, 7, 13, 19, 29, 37, 43, 53, 61, 71, 79, 89, 101, 107, 113, 131, 139, 151, 163, 173, 181, 193, 199, 223, 229, 239, 251, 263, 271, 281, 293, 311, 317, 337, 349, 359, 373, 383, 397, 409, 421, 433, 443, 457, 463, 479, 491, 503, 521, 541, 557, 569
Offset: 1

Views

Author

Keywords

Comments

Also every second odd prime. - Cino Hilliard, Dec 02 2007
If n > 1, then a(n) is less than, and asymptotic to, the n-th Ramanujan prime R_n = A104272(n). Research questions on the difference R_n - a(n) are at A104272. - Jonathan Sondow, Dec 16 2013

Crossrefs

Cf. A000040, A031368 (odd-indexed primes), A104272, A105720, A161463, A179740, A233739.

Programs

Formula

a(n) = A104272(n) - A233739(n). - Jonathan Sondow, Dec 16 2013
a(n) = A105720(n) - A161463(n). - Torlach Rush, May 31 2021

A161463 Sum of all primes from n-th prime to (2*n-1)-th prime.

Original entry on oeis.org

2, 8, 23, 48, 83, 132, 197, 270, 363, 468, 583, 714, 863, 1026, 1199, 1392, 1607, 1836, 2083, 2346, 2627, 2926, 3237, 3564, 3925, 4290, 4669, 5074, 5499, 5938, 6389, 6862, 7355, 7866, 8411, 8964, 9539, 10134, 10743, 11374, 12029, 12702, 13393, 14094
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jun 10 2009

Keywords

Comments

From Lekraj Beedassy, Apr 30 2010: (Start)
Sum of next n primes starting with the n-th prime.
For sum of next n primes starting with the (T(n) + 1)-th prime, or A000124(n)-th prime = A078721(n), {T(n)=A000217(n)}, see A007468(n). (End)
74 of the first 1000 terms of this sequence are primes and each occurs at an odd index. - Harvey P. Dale, Jan 12 2014

Examples

			Sum of 3rd prime to 5th prime = 5+7+11, hence a(3) = 23; sum of 4th prime to 7th prime = 7+11+13+17, hence a(4) = 48.
		

Crossrefs

Cf. A000040 (primes), A007504 (sum of first n primes), A105720 (sum of n-th and next n primes).

Programs

  • Magma
    [ &+[ NthPrime(k): k in [n..2*n-1] ]: n in [1..44] ]; // Klaus Brockhaus, Jun 12 2009
  • Mathematica
    nn=100;With[{prs=Prime[Range[nn]]},Table[Total[Take[prs,{n,2n-1}]],{n, Floor[(nn+1)/2]}]] (* Harvey P. Dale, Jan 12 2014 *)

Extensions

Edited, corrected and extended by Klaus Brockhaus, Jun 12 2009

A358156 a(n) is the smallest number k such that the sum of k consecutive prime numbers starting with the n-th prime is a square.

Original entry on oeis.org

9, 23, 4, 1862, 14, 3, 2, 211, 331, 163, 366, 3, 124, 48, 2, 449, 8403, 121, 35, 2, 4, 105, 77, 43, 190769, 1726, 234, 248, 200, 295, 293, 73, 4, 873, 32, 64, 2456139382, 8, 4519, 14, 123, 5, 9395, 296, 26, 5, 3479, 810, 9, 7091, 1669, 157, 1189, 12559, 269, 4930, 21, 376, 3
Offset: 1

Views

Author

Todor Szimeonov, Nov 01 2022

Keywords

Comments

a(60) > 10^10 and a(68) > 10^13. - Martin Ehrenstein, Nov 09 2022

Examples

			For n=7, prime(7) = 17 and starting there 2 primes 17 + 19 = 36 which is square, so that a(7)=2.
		

Crossrefs

Cf. A000040, A000290, A105720, A230327 (exchanges the roles of n, k), A287027 (squares reached).
Indices of terms: A064397 (2's), A076305 (3's), A072849 (4's), A166255 (70's), A166261 (120's).

Programs

  • Maple
    f:= proc(n) local p,s,k;
      p:= ithprime(n); s:= p;
      for k from 2 do
        p:= nextprime(p);
        s:= s+p;
        if issqr(s) then return k fi
      od
    end proc:
    map(f, [$1..36]); # Robert Israel, Nov 08 2022
  • Mathematica
    a[n_] := Module[{p = s = Prime[n], k = 1}, While[! IntegerQ[Sqrt[s]], p = NextPrime[p]; s += p; k++]; k]; Array[a, 36] (* Amiram Eldar, Nov 08 2022 *)

Extensions

a(25)-a(36) from Robert Israel, Nov 08 2022
a(37)-a(59) from Martin Ehrenstein, Nov 09 2022
Showing 1-6 of 6 results.