A046089 Triangle read by rows, the Bell transform of (n+2)!/2 without column 0.
1, 3, 1, 12, 9, 1, 60, 75, 18, 1, 360, 660, 255, 30, 1, 2520, 6300, 3465, 645, 45, 1, 20160, 65520, 47880, 12495, 1365, 63, 1, 181440, 740880, 687960, 235305, 35700, 2562, 84, 1, 1814400, 9072000, 10372320, 4452840, 877905, 86940, 4410, 108, 1
Offset: 1
Examples
Triangle begins: [1], [3, 1], [12, 9, 1], [60, 75, 18, 1], [360, 660, 255, 30, 1], [2520, 6300, 3465, 645, 45, 1], ...
Links
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- Wolfdieter Lang, First ten rows.
- E. Neuwirth, Recursively defined combinatorial Functions: Extending Galton's board, Discr. Maths. 239 (2001) 33-51.
- John Riordan, Letter, Apr 28 1976.
Programs
-
Mathematica
a[n_, m_] /; n >= m >= 1 := a[n, m] = (2m + n - 1)*a[n-1, m] + a[n-1, m-1]; a[n_, m_] /; n < m = 0; a[, 0] = 0; a[1, 1] = 1; Flatten[Table[a[n, m], {n, 1, 9}, {m, 1, n}]] (* _Jean-François Alcover, Jul 22 2011 *) a[n_, k_] := -(-1/2)^k*(n+1)!*HypergeometricPFQ[{1-k, n/2+1, (n+3)/2}, {3/2, 2}, 1]/(k-1)!; Table[a[n, k], {n, 1, 9}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 28 2013, after Vladimir Kruchinin *) a[0] = 0; a[n_] := (n + 1)!/2; T[n_, k_] := T[n, k] = If[k == 0, If[n == 0, 1, a[0]^n], Sum[Binomial[n - 1, j - 1] a[j] T[n - j, k - 1], {j, 0, n - k + 1}]]; Table[T[n, k], {n, 1, 9}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 19 2016, after Peter Luschny, updated Jan 01 2021 *) rows = 9; a[n_, m_] := BellY[n, m, Table[(k+2)!/2, {k, 0, rows}]]; Table[a[n, m], {n, 1, rows}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018 *)
-
Maxima
a(n,k):=(n!*sum((-1)^(k-j)*binomial(k,j)*binomial(n+2*j-1,2*j-1),j,1,k))/(2^k*k!); /* Vladimir Kruchinin, Apr 01 2011 */
-
Sage
# uses[bell_matrix from A264428] # Adds a column 1,0,0,0, ... at the left side of the triangle. bell_matrix(lambda n: factorial(n+2)//2, 9) # Peter Luschny, Jan 19 2016
Formula
a(n, m) = n!*A030523(n, m)/(m!*2^(n-m)); a(n, m) = (2*m+n-1)*a(n-1, m) + a(n-1, m-1), n >= m >= 1; a(n, m)=0, n
a(n, m) = sum(|S1(n, j)|* A075497(j, m), j=m..n) (matrix product), with S1(n, j) := A008275(n, j) (signed Stirling1 triangle). Priv. comm. to Wolfdieter Lang by E. Neuwirth, Feb 15 2001; see also the 2001 Neuwirth reference.
a(n, k) = (n!*sum(j=1..k, (-1)^(k-j)*binomial(k,j)*binomial(n+2*j-1,2*j-1)))/(2^k*k!) - Vladimir Kruchinin, Apr 01 2011
Extensions
New name from Peter Luschny, Jan 19 2016
A357119 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} |Stirling1(n,k*j)|.
1, 1, 0, 1, 1, 0, 1, 0, 2, 0, 1, 0, 1, 6, 0, 1, 0, 0, 3, 24, 0, 1, 0, 0, 1, 12, 120, 0, 1, 0, 0, 0, 6, 60, 720, 0, 1, 0, 0, 0, 1, 35, 360, 5040, 0, 1, 0, 0, 0, 0, 10, 226, 2520, 40320, 0, 1, 0, 0, 0, 0, 1, 85, 1645, 20160, 362880, 0, 1, 0, 0, 0, 0, 0, 15, 735, 13454, 181440, 3628800, 0
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, 1, 1, ... 0, 1, 0, 0, 0, 0, 0, ... 0, 2, 1, 0, 0, 0, 0, ... 0, 6, 3, 1, 0, 0, 0, ... 0, 24, 12, 6, 1, 0, 0, ... 0, 120, 60, 35, 10, 1, 0, ... 0, 720, 360, 226, 85, 15, 1, ...
Links
- Eric Weisstein's World of Mathematics, Pochhammer Symbol.
Programs
-
PARI
T(n, k) = sum(j=0, n, abs(stirling(n, k*j, 1)));
-
PARI
T(n, k) = if(k==0, 0^n, n!*polcoef(sum(j=0, n\k, (-log(1-x+x*O(x^n)))^(k*j)/(k*j)!), n));
-
PARI
Pochhammer(x, n) = prod(k=0, n-1, x+k); T(n, k) = if(k==0, 0^n, my(w=exp(2*Pi*I/k)); round(sum(j=0, k-1, Pochhammer(w^j, n)))/k);
Formula
For k > 0, e.g.f. of column k: Sum_{j>=0} (-log(1-x))^(k*j)/(k*j)!.
For k > 0, T(n,k) = ( Sum_{j=0..k-1} (w^j)_n )/k, where (x)_n is the Pochhammer symbol and w = exp(2*Pi*i/k).
A357683 a(n) = Sum_{k=0..floor(n/2)} n^k * |Stirling1(n,2*k)|.
1, 0, 2, 9, 60, 500, 4920, 55566, 706720, 9979200, 154706760, 2609691700, 47547916416, 929943488448, 19421810408000, 431196538865400, 10137091700736000, 251485260368396288, 6563768030597826720, 179746132716715050000, 5152012082327932518400
Offset: 0
Keywords
Links
- Eric Weisstein's World of Mathematics, Pochhammer Symbol.
Programs
-
PARI
a(n) = sum(k=0, n\2, n^k*abs(stirling(n, 2*k, 1)));
-
PARI
a(n) = round(n!*polcoef(cosh(sqrt(n)*log(1-x+x*O(x^n))), n));
-
PARI
a(n) = round((prod(k=0, n-1, sqrt(n)+k)+prod(k=0, n-1, -sqrt(n)+k)))/2;
Formula
a(n) = n! * [x^n] cosh( sqrt(n) * log(1-x) ).
a(n) = ( (sqrt(n))_n + (-sqrt(n))_n )/2, where (x)_n is the Pochhammer symbol.
a(n) ~ n^(n + sqrt(n)/2 - 1/4) / (2*exp(n - sqrt(n) - 1/2)) * (1 - 3/(4*sqrt(n))). - Vaclav Kotesovec, Oct 10 2022
A357712 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. cosh( sqrt(k) * log(1-x) ).
1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 2, 3, 0, 1, 0, 3, 6, 12, 0, 1, 0, 4, 9, 26, 60, 0, 1, 0, 5, 12, 42, 140, 360, 0, 1, 0, 6, 15, 60, 240, 896, 2520, 0, 1, 0, 7, 18, 80, 360, 1614, 6636, 20160, 0, 1, 0, 8, 21, 102, 500, 2520, 12474, 55804, 181440, 0, 1, 0, 9, 24, 126, 660, 3620, 20160, 108900, 525168, 1814400, 0
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, 1, ... 0, 0, 0, 0, 0, 0, ... 0, 1, 2, 3, 4, 5, ... 0, 3, 6, 9, 12, 15, ... 0, 12, 26, 42, 60, 80, ... 0, 60, 140, 240, 360, 500, ...
Links
- Eric Weisstein's World of Mathematics, Pochhammer Symbol.
Crossrefs
Programs
-
PARI
T(n, k) = sum(j=0, n\2, k^j*abs(stirling(n, 2*j, 1)));
-
PARI
T(n, k) = round((prod(j=0, n-1, sqrt(k)+j)+prod(j=0, n-1, -sqrt(k)+j)))/2;
Formula
T(n,k) = Sum_{j=0..floor(n/2)} k^j * |Stirling1(n,2*j)|.
T(n,k) = ( (sqrt(k))_n + (-sqrt(k))_n )/2, where (x)_n is the Pochhammer symbol.
T(0,k) = 1, T(1,k) = 0; T(n,k) = (2*n-3) * T(n-1,k) - (n^2-4*n+4-k) * T(n-2,k).
A357834 a(n) = Sum_{k=0..floor(n/3)} Stirling1(n,3*k).
1, 0, 0, 1, -6, 35, -224, 1603, -12810, 113589, -1109472, 11852841, -137611110, 1726238787, -23277264192, 335861699355, -5164348236138, 84316474011861, -1456893047937600, 26562992204112273, -509679388313669574, 10266675502780006947, -216625348636705401120
Offset: 0
Keywords
Links
- Eric Weisstein's World of Mathematics, Pochhammer Symbol.
Programs
-
PARI
a(n) = sum(k=0, n\3, stirling(n, 3*k, 1));
-
PARI
my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N\3, log(1+x)^(3*k)/(3*k)!)))
-
PARI
Pochhammer(x, n) = prod(k=0, n-1, x+k); a(n) = my(w=(-1+sqrt(3)*I)/2); (-1)^n*round(Pochhammer(-1, n)+Pochhammer(-w, n)+Pochhammer(-w^2, n))/3;
Formula
Let w = exp(2*Pi*i/3) and set F(x) = (exp(x) + exp(w*x) + exp(w^2*x))/3 = 1 + x^3/3! + x^6/6! + ... . Then the e.g.f. for the sequence is F(log(1+x)).
a(n) = (-1)^n * ( (-1)_n + (-w)_n + (-w^2)_n )/3, where (x)_n is the Pochhammer symbol.
Comments