cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A360193 a(n) = Sum_{k=0..n} (k-1)^(k-1) * binomial(n,k).

Original entry on oeis.org

-1, 0, 2, 9, 52, 445, 5166, 75019, 1300776, 26167257, 598577770, 15337224991, 435020120316, 13529095809541, 457727913937854, 16736043791509995, 657590281425958096, 27631245762003186865, 1236355641557737359570, 58689534518861119967287
Offset: 0

Views

Author

Seiichi Manyama, Mar 05 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (k-1)^(k-1)*binomial(n, k));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(-exp(x+lambertw(-x))))
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(x*exp(x)/lambertw(-x)))

Formula

E.g.f.: -exp(x + LambertW(-x)).
E.g.f.: x * exp(x) / LambertW(-x).
a(n) ~ exp(exp(-1)-1) * n^(n-1). - Vaclav Kotesovec, Mar 06 2023

A105819 Triangle of the numbers of different forests of m rooted trees of smallest order 2, i.e., without isolated vertices, on N labeled nodes.

Original entry on oeis.org

0, 2, 0, 9, 0, 0, 64, 12, 0, 0, 625, 180, 0, 0, 0, 7776, 2730, 120, 0, 0, 0, 117649, 46410, 3780, 0, 0, 0, 0, 2097152, 893816, 99120, 1680, 0, 0, 0, 0, 43046721, 19389384, 2600640, 90720, 0, 0, 0, 0, 0, 1000000000, 469532790, 71734320, 3654000, 30240, 0
Offset: 1

Views

Author

Washington Bomfim, Apr 21 2005

Keywords

Comments

Forests of order N with m components, m > floor(N/2) must contain an isolated vertex since it is impossible to partition N vertices in floor(N/2) + 1 or more trees without giving only one vertex to a tree.
Also the Bell transform of A055860. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 27 2016

Examples

			a(8) = 12 because 4 vertices can be partitioned in two trees only in one way: both trees receiving 2 vertices. Two trees on 2 vertices can be labeled in binomial(4,2) ways and to each one of the 2*binomial(4,2) = 12 possibilities there are more 2 possible trees of order 2 in a forest. But since we have 2 trees of the same order, i.e., 2, we must divide 2*binomial(4,2)*2 by 2!.
Triangle T(n,k) begins:
:       0;
:       2,      0;
:       9,      0,     0;
:      64,     12,     0,    0;
:     625,    180,     0,    0, 0;
:    7776,   2730,   120,    0, 0, 0;
:  117649,  46410,  3780,    0, 0, 0, 0;
: 2097152, 893816, 99120, 1680, 0, 0, 0, 0;
		

Crossrefs

Row sums give A105785.

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0, ..) as column 0.
    BellMatrix(n -> `if`(n=0,0,(n+1)^n), 9); # Peter Luschny, Jan 27 2016
    # second Maple program:
    b:= proc(n) option remember; expand(`if`(n=0, 1, add(
           binomial(n-1, j-1)*j^(j-1)*x*b(n-j), j=2..n)))
        end:
    T:= (n, k)-> coeff(b(n), x, k):
    seq(seq(T(n, k), k=1..n), n=1..12);  # Alois P. Heinz, Aug 13 2017
  • Mathematica
    BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
    rows = 12;
    B = BellMatrix[Function[n, If[n == 0, 0, (n+1)^n]], rows];
    Table[B[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)

Formula

a(n)= 0, if m > floor(N/2) (see comments), or can be calculated by the sum Num/D over the partitions of N: 1K1 + 2K2 + ... + nKN, with exactly m parts and smallest part = 2, where Num = N!*Product_{i=1..N}i^((i-1)Ki) and D = Product_{i=1..N}(Ki!(i!)^Ki).
From Mélika Tebni, Apr 23 2023: (Start)
E.g.f. of column k: (-x - LambertW(-x))^k / k!, k > 0.
Sum_{k=1..n} (-1)^(n-k)*T(n+k,k) = n+1.
Sum_{k=1..n} (-1)^(k+1)*T(n,k) = A360193(n), for n > 0.
Sum_{k=1..n} (-1)^(k+1)*T(n+k,k)/(n+k-1) = 1/n, for n > 1.
T(n,k) = Sum_{j=k..n} j!*abs(Stirling1(j-k,k))*A354794(n,j)/(j-k)!. (End)

A219034 Triangular array read by rows: T(n,k) is the number of forests of rooted trees on n labeled nodes with exactly k isolated nodes; n>=0, 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 2, 0, 1, 9, 6, 0, 1, 76, 36, 12, 0, 1, 805, 380, 90, 20, 0, 1, 10626, 4830, 1140, 180, 30, 0, 1, 167839, 74382, 16905, 2660, 315, 42, 0, 1, 3091768, 1342712, 297528, 45080, 5320, 504, 56, 0, 1, 65127465, 27825912, 6042204, 892584, 101430, 9576, 756, 72, 0, 1
Offset: 0

Views

Author

Geoffrey Critzer, Nov 10 2012

Keywords

Comments

Column k=0 is A105785.
Row sums = (n+1)^(n-1).

Examples

			Triangle T(n,k) begins:
        1;
        0,       1;
        2,       0,      1;
        9,       6,      0,     1;
       76,      36,     12,     0,    1;
      805,     380,     90,    20,    0,   1;
    10626,    4830,   1140,   180,   30,   0,  1;
   167839,   74382,  16905,  2660,  315,  42,  0, 1;
  3091768, 1342712, 297528, 45080, 5320, 504, 56, 0, 1;
  ...
		

Programs

  • Maple
    b:= proc(n) option remember; expand(`if`(n=0, 1, add(i^(i-1)
          *b(n-i)*binomial(n-1, i-1)*`if`(i=1, x, 1), i=1..n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n)):
    seq(T(n), n=0..10);  # Alois P. Heinz, Dec 31 2021
  • Mathematica
    nn=8; t=Sum[n^(n-1)x^n/n!, {n,1,nn}]; Range[0,nn]! CoefficientList[ Series[Exp[t-x+y x], {x,0,nn}], {x,y}] //Grid

Formula

E.g.f.: exp(T(x)-x+y*x) where T(x) is the e.g.f. for A000169.

A361916 a(n) = n! * Sum_{k=0..floor(n/2)} (-1)^k * (k+1)^(k-1) / (k! * (n-2*k)!).

Original entry on oeis.org

1, 1, -1, -5, 25, 161, -1409, -12221, 158705, 1733185, -30136769, -397326709, 8696945929, 134416055905, -3555479651905, -63044502191789, 1957884163020001, 39178556553643649, -1398250387206450305, -31169265056007817445, 1257498026543130033401
Offset: 0

Views

Author

Seiichi Manyama, Apr 24 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x-lambertw(x^2))))

Formula

E.g.f.: exp(x - LambertW(x^2)) = LambertW(x^2)/x^2 * exp(x).

A361917 a(n) = n! * Sum_{k=0..floor(n/3)} (-1)^k * (k+1)^(k-1) / (k! * (n-3*k)!).

Original entry on oeis.org

1, 1, 1, -5, -23, -59, 961, 7351, 29905, -877463, -9450719, -52724429, 2282907001, 31742360365, 225092745697, -12992587010129, -221436656404319, -1905297800257199, 137972958868569025, 2784953660339878507, 28177036295775415561, -2459373614334806266859
Offset: 0

Views

Author

Seiichi Manyama, Apr 24 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x-lambertw(x^3))))

Formula

E.g.f.: exp(x - LambertW(x^3)) = LambertW(x^3)/x^3 * exp(x).
Showing 1-5 of 5 results.