cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A084301 a(n) = sigma(n) mod 6.

Original entry on oeis.org

1, 3, 4, 1, 0, 0, 2, 3, 1, 0, 0, 4, 2, 0, 0, 1, 0, 3, 2, 0, 2, 0, 0, 0, 1, 0, 4, 2, 0, 0, 2, 3, 0, 0, 0, 1, 2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 4, 3, 3, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 2, 1, 0, 0, 2, 0, 0, 0, 0, 3, 2, 0, 4, 2, 0, 0, 2, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 4, 0, 2, 0, 0, 0, 2, 3, 0, 1, 0, 0, 2, 0, 0
Offset: 1

Views

Author

Labos Elemer, Jun 02 2003

Keywords

Crossrefs

Sequences sigma(n) mod k: A053866 (k=2), A074941 (k=3), A105824 (k=4), A105825 (k=5), A084301 (k=6), A105826 (k=7), A105827 (k=8).
Cf. A074627 (locations of 0), A074628 (locations of 2), A067051 (locations of 3), A074630 (locations of 4), A074384 (locations of 5).

Programs

Formula

a(n) = A010875(A000203(n)). - Antti Karttunen, Nov 07 2017

A105824 a(n) = sigma(n) mod 4.

Original entry on oeis.org

1, 3, 0, 3, 2, 0, 0, 3, 1, 2, 0, 0, 2, 0, 0, 3, 2, 3, 0, 2, 0, 0, 0, 0, 3, 2, 0, 0, 2, 0, 0, 3, 0, 2, 0, 3, 2, 0, 0, 2, 2, 0, 0, 0, 2, 0, 0, 0, 1, 1, 0, 2, 2, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 3, 2, 2, 0, 0, 0, 0, 0, 2, 1, 2, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 2, 3, 0, 1, 2, 0, 0, 2, 0
Offset: 1

Views

Author

Shyam Sunder Gupta, May 05 2005

Keywords

Crossrefs

Sequences sigma(n) mod k: A053866 (k=2), A074941 (k=3), A105824 (k=4), A105825 (k=5), A084301 (k=6), A105826 (k=7), A105827 (k=8).

Programs

  • Maple
    A105824:= n-> (numtheory[sigma](n) mod 4):
    seq (A105824(n), n=1..105); # Jani Melik, Jan 26 2011
  • Mathematica
    Table[Mod[DivisorSigma[1, n], 4], {n, 100}] (* Wesley Ivan Hurt, Nov 07 2017 *)
  • PARI
    a(n)=sigma(n)%4

Formula

a(n) = A010873(A000203(n)). - Antti Karttunen, Nov 07 2017

A105827 a(n) = sigma(n) (mod 8).

Original entry on oeis.org

1, 3, 4, 7, 6, 4, 0, 7, 5, 2, 4, 4, 6, 0, 0, 7, 2, 7, 4, 2, 0, 4, 0, 4, 7, 2, 0, 0, 6, 0, 0, 7, 0, 6, 0, 3, 6, 4, 0, 2, 2, 0, 4, 4, 6, 0, 0, 4, 1, 5, 0, 2, 6, 0, 0, 0, 0, 2, 4, 0, 6, 0, 0, 7, 4, 0, 4, 6, 0, 0, 0, 3, 2, 2, 4, 4, 0, 0, 0, 2, 1, 6, 4, 0, 4, 4, 0, 4, 2, 2, 0, 0, 0, 0, 0, 4, 2, 3, 4, 1, 6, 0, 0, 2, 0
Offset: 1

Views

Author

Shyam Sunder Gupta, May 05 2005

Keywords

Crossrefs

Cf. A000203.
Sequences sigma(n) mod k: A053866 (k=2), A074941 (k=3), A105824 (k=4), A105825 (k=5), A084301 (k=6), A105826 (k=7), A105827 (k=8), A105852 (k=9), A105853 (k=10).

Programs

  • Maple
    A105827:= (n-> numtheory[sigma](n) mod 8):
    seq (A105827(n), n=1..105); # Jani Melik, Jan 26 2011
  • PARI
    a(n)=sigma(n)%8

A105826 a(n) = sigma(n) (mod 7).

Original entry on oeis.org

1, 3, 4, 0, 6, 5, 1, 1, 6, 4, 5, 0, 0, 3, 3, 3, 4, 4, 6, 0, 4, 1, 3, 4, 3, 0, 5, 0, 2, 2, 4, 0, 6, 5, 6, 0, 3, 4, 0, 6, 0, 5, 2, 0, 1, 2, 6, 5, 1, 2, 2, 0, 5, 1, 2, 1, 3, 6, 4, 0, 6, 5, 6, 1, 0, 4, 5, 0, 5, 4, 2, 6, 4, 2, 5, 0, 5, 0, 3, 4, 2, 0, 0, 0, 3, 6, 1, 5, 6, 3, 0, 0, 2, 4, 1, 0, 0, 3, 2, 0, 4, 6, 6, 0, 3
Offset: 1

Views

Author

Shyam Sunder Gupta, May 05 2005

Keywords

Crossrefs

Cf. A000203.
Sequences sigma(n) mod k: A053866 (k=2), A074941 (k=3), A105824 (k=4), A105825 (k=5), A084301 (k=6), A105826 (k=7), A105827 (k=8).

Programs

  • Maple
    A105826:= n-> (numtheory[sigma](n) mod 7):
    seq (A105826(n), n=1..105); # Jani Melik, Jan 26 2011
  • Mathematica
    Mod[DivisorSigma[1,Range[110]],7] (* Harvey P. Dale, Jul 30 2021 *)
  • PARI
    a(n)=sigma(n)%7

A105853 a(n) = sigma(n) (mod 10), i.e., unit's digit of sigma(n).

Original entry on oeis.org

1, 3, 4, 7, 6, 2, 8, 5, 3, 8, 2, 8, 4, 4, 4, 1, 8, 9, 0, 2, 2, 6, 4, 0, 1, 2, 0, 6, 0, 2, 2, 3, 8, 4, 8, 1, 8, 0, 6, 0, 2, 6, 4, 4, 8, 2, 8, 4, 7, 3, 2, 8, 4, 0, 2, 0, 0, 0, 0, 8, 2, 6, 4, 7, 4, 4, 8, 6, 6, 4, 2, 5, 4, 4, 4, 0, 6, 8, 0, 6, 1, 6, 4, 4, 8, 2, 0, 0, 0, 4, 2, 8, 8, 4, 0, 2, 8, 1, 6, 7, 2, 6, 4, 0, 2
Offset: 1

Views

Author

Shyam Sunder Gupta, May 05 2005

Keywords

Crossrefs

Sequences sigma(n) mod k: A053866 (k=2), A074941 (k=3), A105824 (k=4), A105825 (k=5), A084301 (k=6), A105826 (k=7), A105827 (k=8), A105852 (k=9), A105853 (k=10).

Programs

Formula

a(n) = A010879(A000203(n)). - Michel Marcus, Jul 26 2017
Showing 1-5 of 5 results.