cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A105827 a(n) = sigma(n) (mod 8).

Original entry on oeis.org

1, 3, 4, 7, 6, 4, 0, 7, 5, 2, 4, 4, 6, 0, 0, 7, 2, 7, 4, 2, 0, 4, 0, 4, 7, 2, 0, 0, 6, 0, 0, 7, 0, 6, 0, 3, 6, 4, 0, 2, 2, 0, 4, 4, 6, 0, 0, 4, 1, 5, 0, 2, 6, 0, 0, 0, 0, 2, 4, 0, 6, 0, 0, 7, 4, 0, 4, 6, 0, 0, 0, 3, 2, 2, 4, 4, 0, 0, 0, 2, 1, 6, 4, 0, 4, 4, 0, 4, 2, 2, 0, 0, 0, 0, 0, 4, 2, 3, 4, 1, 6, 0, 0, 2, 0
Offset: 1

Views

Author

Shyam Sunder Gupta, May 05 2005

Keywords

Crossrefs

Cf. A000203.
Sequences sigma(n) mod k: A053866 (k=2), A074941 (k=3), A105824 (k=4), A105825 (k=5), A084301 (k=6), A105826 (k=7), A105827 (k=8), A105852 (k=9), A105853 (k=10).

Programs

  • Maple
    A105827:= (n-> numtheory[sigma](n) mod 8):
    seq (A105827(n), n=1..105); # Jani Melik, Jan 26 2011
  • PARI
    a(n)=sigma(n)%8

A105853 a(n) = sigma(n) (mod 10), i.e., unit's digit of sigma(n).

Original entry on oeis.org

1, 3, 4, 7, 6, 2, 8, 5, 3, 8, 2, 8, 4, 4, 4, 1, 8, 9, 0, 2, 2, 6, 4, 0, 1, 2, 0, 6, 0, 2, 2, 3, 8, 4, 8, 1, 8, 0, 6, 0, 2, 6, 4, 4, 8, 2, 8, 4, 7, 3, 2, 8, 4, 0, 2, 0, 0, 0, 0, 8, 2, 6, 4, 7, 4, 4, 8, 6, 6, 4, 2, 5, 4, 4, 4, 0, 6, 8, 0, 6, 1, 6, 4, 4, 8, 2, 0, 0, 0, 4, 2, 8, 8, 4, 0, 2, 8, 1, 6, 7, 2, 6, 4, 0, 2
Offset: 1

Views

Author

Shyam Sunder Gupta, May 05 2005

Keywords

Crossrefs

Sequences sigma(n) mod k: A053866 (k=2), A074941 (k=3), A105824 (k=4), A105825 (k=5), A084301 (k=6), A105826 (k=7), A105827 (k=8), A105852 (k=9), A105853 (k=10).

Programs

Formula

a(n) = A010879(A000203(n)). - Michel Marcus, Jul 26 2017

A240597 Numbers k such that sigma(k) == k (mod 9).

Original entry on oeis.org

1, 15, 24, 42, 60, 64, 69, 78, 90, 100, 114, 123, 133, 147, 153, 177, 186, 198, 222, 231, 240, 258, 259, 270, 276, 288, 289, 306, 339, 360, 366, 393, 402, 403, 414, 429, 438, 447, 459, 474, 477, 492, 495, 501, 507, 511, 522, 582, 588, 594, 600
Offset: 1

Views

Author

Ivan N. Ianakiev, Sep 13 2014

Keywords

Comments

That is, numbers k that satisfy the following:
A010878(k) = A105852(k) or A010878(k) = A010878(A000203(k)).
A010888(k) = A190998(k) or A010888(k) = A010888(A000203(k)).

Examples

			sigma(15) = 24. 24 == 15 (mod 9), therefore 15 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000],Mod[#,9]==Mod[DivisorSigma[1,#],9]&]

Formula

A010888(a(n)) = A010888(A000203(a(n))).
A010888(a(n)) = A190998(a(n)).
Showing 1-3 of 3 results.