cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106232 Least k > 0 such that (4*n^2 + 2)*(k^2) + (4*n^2 + 2)*k + 1 = j^2.

Original entry on oeis.org

4, 4, 12, 24, 40, 60, 84, 112, 144, 180, 220, 264, 312, 364, 420, 480, 544, 612, 684, 760, 840, 924, 1012, 1104, 1200, 1300, 1404, 1512, 1624, 1740, 1860, 1984, 2112, 2244, 2380, 2520, 2664, 2812, 2964, 3120, 3280, 3444, 3612, 3784, 3960, 4140, 4324, 4512
Offset: 1

Views

Author

Pierre CAMI, Apr 26 2005

Keywords

Comments

For k there is always a recurrence.
For n=1, k(1,1) = 0, k(2,1) = 4 then k(i,1) = 10*k(i-1,1) + 4 - k(i-3,n).
For n>1, k(1,n) = 0, k(2,n) = 2*n^2 - 2*n, k(3,n) = 2*n^2 + 2*n, k(4,n) = (8*n^2+2)*k(2,n) + 4*n^2 then k(i,n) = (8*n^2+2)*k(i-2,n) + 4*n^2 - k(i-4,n).

Crossrefs

Programs

  • Magma
    [4] cat [2*n*(n+1): n in [1..50]]; // Vincenzo Librandi, Apr 06 2020
    
  • Mathematica
    LinearRecurrence[{3,-3,1},{4,4,12,24},50] (* Harvey P. Dale, Mar 05 2023 *)
  • PARI
    a(n) = if(n==1, 4, 2*n^2-2*n); \\ Jinyuan Wang, Apr 07 2020

Formula

a(1) = 4, a(n) = 2*n^2 - 2*n for n > 1, j sequence = A106231.
a(n) = A046092(n-1), n > 1. - R. J. Mathar, Aug 28 2008
G.f.: 4*x*(x^3 - 3*x^2 + 2*x - 1)/(x - 1)^3. - Colin Barker, Mar 06 2013
E.g.f.: 4*x + 2*x^2*exp(x). - Stefano Spezia, Jun 06 2021

Extensions

More terms from Colin Barker, Mar 06 2013