cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A035090 Non-palindromic squares which when written backwards remain square (and still have the same number of digits).

Original entry on oeis.org

144, 169, 441, 961, 1089, 9801, 10404, 10609, 12544, 12769, 14884, 40401, 44521, 48841, 90601, 96721, 1004004, 1006009, 1022121, 1024144, 1026169, 1042441, 1044484, 1062961, 1212201, 1214404, 1216609, 1236544, 1238769, 1256641
Offset: 1

Views

Author

Patrick De Geest, Nov 15 1998

Keywords

Comments

Squares with trailing zeros not included.
Sequence is infinite, since it includes, e.g., 10^(2k) + 4*10^k + 4 for all k. - Robert Israel, Sep 20 2015

Crossrefs

Reversing a polytopal number gives a polytopal number:
cube to cube: A035123, A035124, A035125, A002781;
square to square: A161902, A035090, A033294, A106323, A106324, A002779;
square to triangular: A181412, A066702;
tetrahedral to tetrahedral: A006030;
triangular to square: A066703, A179889;
triangular to triangular: A066528, A069673, A003098, A066569.
Cf. A319388.

Programs

  • Maple
    rev:= proc(n) local L,i;
    L:= convert(n,base,10);
    add(L[-i]*10^(i-1),i=1..nops(L))
    end proc:
    filter:= proc(n) local t;
      if n mod 10 = 0 then return false fi;
      t:= rev(n);
    t <> n and issqr(t)
    end proc:
    select(filter, [seq(n^2, n=1..10^5)]); # Robert Israel, Sep 20 2015
  • Mathematica
    Select[Range[1200]^2,!PalindromeQ[#]&&IntegerLength[#]==IntegerLength[ IntegerReverse[ #]] && IntegerQ[Sqrt[IntegerReverse[#]]]&] (* Harvey P. Dale, Jul 19 2023 *)

Formula

a(n) = A035123(n)^2. - R. J. Mathar, Jan 25 2017

A035123 Roots of 'non-palindromic squares remaining square when written backwards'.

Original entry on oeis.org

12, 13, 21, 31, 33, 99, 102, 103, 112, 113, 122, 201, 211, 221, 301, 311, 1002, 1003, 1011, 1012, 1013, 1021, 1022, 1031, 1101, 1102, 1103, 1112, 1113, 1121, 1122, 1201, 1202, 1211, 1212, 1301, 2001, 2011, 2012, 2021, 2022, 2101, 2102, 2111, 2121
Offset: 1

Views

Author

Patrick De Geest, Nov 15 1998

Keywords

Comments

Those with trailing zeros are excluded.
Union of ordered entries of A106323 and A106324. - Lekraj Beedassy, May 02 2005

Examples

			1212^2 = 1468944 -> 4498641 = 2121^2.
		

Crossrefs

Programs

  • Mathematica
    r[n_] := FromDigits[Reverse[IntegerDigits[n]]]; Select[Range[2200], Mod[#, 10] != 0 && IntegerQ[Sqrt[r[#^2]]] && r[#^2] != #^2 &] (* Jean-François Alcover, Mar 08 2011 *)

A106323 Smaller of number pair whose squares are reversals of each other, with no leading zeros allowed.

Original entry on oeis.org

12, 13, 33, 102, 103, 112, 113, 122, 1002, 1003, 1011, 1012, 1013, 1021, 1022, 1031, 1102, 1103, 1112, 1113, 1121, 1122, 1202, 1212, 2012, 2022, 3168, 10002, 10003, 10011, 10012, 10013, 10021, 10022, 10031, 10102, 10103, 10111, 10112, 10113
Offset: 1

Views

Author

Lekraj Beedassy, Apr 29 2005

Keywords

Comments

For numbers whose squares are the reversal of a(n)^2, see A106324.

Examples

			33 is in the sequence because 33^2=1089 and we have 9801=99^2. Likewise,122^2=14884 and we have 48841=221^2.
		

Crossrefs

Half of A035123.

Programs

  • PARI
    isok(n) = {if (n % 10 == 0, return (0)); d = digits(n^2, 10); m = sum(k=0, #d-1, d[k+1]*10^(k)); if (! issquare(m), return (0)); return (n < sqrtint(m));} \\ Michel Marcus, Jul 28 2013

Extensions

Corrected and extended by Joshua Zucker, May 12 2006
Showing 1-3 of 3 results.