cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A035090 Non-palindromic squares which when written backwards remain square (and still have the same number of digits).

Original entry on oeis.org

144, 169, 441, 961, 1089, 9801, 10404, 10609, 12544, 12769, 14884, 40401, 44521, 48841, 90601, 96721, 1004004, 1006009, 1022121, 1024144, 1026169, 1042441, 1044484, 1062961, 1212201, 1214404, 1216609, 1236544, 1238769, 1256641
Offset: 1

Views

Author

Patrick De Geest, Nov 15 1998

Keywords

Comments

Squares with trailing zeros not included.
Sequence is infinite, since it includes, e.g., 10^(2k) + 4*10^k + 4 for all k. - Robert Israel, Sep 20 2015

Crossrefs

Reversing a polytopal number gives a polytopal number:
cube to cube: A035123, A035124, A035125, A002781;
square to square: A161902, A035090, A033294, A106323, A106324, A002779;
square to triangular: A181412, A066702;
tetrahedral to tetrahedral: A006030;
triangular to square: A066703, A179889;
triangular to triangular: A066528, A069673, A003098, A066569.
Cf. A319388.

Programs

  • Maple
    rev:= proc(n) local L,i;
    L:= convert(n,base,10);
    add(L[-i]*10^(i-1),i=1..nops(L))
    end proc:
    filter:= proc(n) local t;
      if n mod 10 = 0 then return false fi;
      t:= rev(n);
    t <> n and issqr(t)
    end proc:
    select(filter, [seq(n^2, n=1..10^5)]); # Robert Israel, Sep 20 2015
  • Mathematica
    Select[Range[1200]^2,!PalindromeQ[#]&&IntegerLength[#]==IntegerLength[ IntegerReverse[ #]] && IntegerQ[Sqrt[IntegerReverse[#]]]&] (* Harvey P. Dale, Jul 19 2023 *)

Formula

a(n) = A035123(n)^2. - R. J. Mathar, Jan 25 2017

A064021 Squares k^2 such that reverse(k)^2 = reverse(k^2), excluding squares of palindromes.

Original entry on oeis.org

144, 169, 441, 961, 10404, 10609, 12544, 12769, 14884, 40401, 44521, 48841, 90601, 96721, 1004004, 1006009, 1022121, 1024144, 1026169, 1042441, 1044484, 1062961, 1212201, 1214404, 1216609, 1236544, 1238769, 1256641, 1258884, 1442401
Offset: 1

Views

Author

Harvey P. Dale, Sep 18 2001

Keywords

Comments

Subsequence of A035090. - M. F. Hasler, Mar 22 2011

Examples

			1026169 is included because its square root, 1013, when reversed (i.e., 3101) and squared yields 9616201.
Squares < 10 and 121 = 11^2, 484 = 22^2, ... are not in the sequence, since they are the square of a palindrome. - _M. F. Hasler_, Mar 22 2011
		

References

  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, pp. 124, 127 (Rev. ed. 1997).

Crossrefs

Programs

  • Mathematica
    Cases[Range[2000]^2, k_ /; Mod[k, 10] != 0 && IntegerDigits[k] != Reverse[IntegerDigits[k]] && FromDigits[Reverse[IntegerDigits[Sqrt[k]]]]^2 == FromDigits[Reverse[IntegerDigits[k]]]] (* Jean-François Alcover, Mar 22 2011 *)
    Select[Range[1250]^2,!PalindromeQ[Sqrt[#]]&&IntegerReverse[#] == IntegerReverse[ Sqrt[#]]^2 &&Mod[#,10]!=0&] (* Harvey P. Dale, Jul 01 2022 *)
  • PARI
    Rev(x)= { local(d,r); r=0; while (x>0, d=x-10*(x\10); x\=10; r=r*10 + d); return(r) }
    { n=0; for (m=1, 10^9, if (m%10==0, next); x=m^2; r=Rev(x); if (r==x, next); if (r==Rev(m)^2, write("b064021.txt", n++, " ", x); if (n==750, break)) ) } \\ Harry J. Smith, Sep 06 2009

Formula

{n = A000290(k) such that A004086(A000290(k)) = A000290(A004086(k)) and k is not in A002113}. - Jonathan Vos Post, May 02 2011
a(n) = A140212(n)^2. - Giovanni Resta, Jun 22 2018

A106323 Smaller of number pair whose squares are reversals of each other, with no leading zeros allowed.

Original entry on oeis.org

12, 13, 33, 102, 103, 112, 113, 122, 1002, 1003, 1011, 1012, 1013, 1021, 1022, 1031, 1102, 1103, 1112, 1113, 1121, 1122, 1202, 1212, 2012, 2022, 3168, 10002, 10003, 10011, 10012, 10013, 10021, 10022, 10031, 10102, 10103, 10111, 10112, 10113
Offset: 1

Views

Author

Lekraj Beedassy, Apr 29 2005

Keywords

Comments

For numbers whose squares are the reversal of a(n)^2, see A106324.

Examples

			33 is in the sequence because 33^2=1089 and we have 9801=99^2. Likewise,122^2=14884 and we have 48841=221^2.
		

Crossrefs

Half of A035123.

Programs

  • PARI
    isok(n) = {if (n % 10 == 0, return (0)); d = digits(n^2, 10); m = sum(k=0, #d-1, d[k+1]*10^(k)); if (! issquare(m), return (0)); return (n < sqrtint(m));} \\ Michel Marcus, Jul 28 2013

Extensions

Corrected and extended by Joshua Zucker, May 12 2006

A106324 Greater of number pair whose squares are reversals of each other, with no leading zeros allowed.

Original entry on oeis.org

21, 31, 99, 201, 301, 211, 311, 221, 2001, 3001, 1101, 2101, 3101, 1201, 2201, 1301, 2011, 3011, 2111, 3111, 1211, 2211, 2021, 2121, 2102, 2202, 6501, 20001, 30001, 11001, 21001, 31001, 12001, 22001, 13001, 20101, 30101, 11101, 21101, 31101
Offset: 1

Views

Author

Lekraj Beedassy, Apr 29 2005

Keywords

Comments

Terms are ordered according to the smaller member of the pair (A106323). - Michel Marcus, Jul 28 2013

Crossrefs

Half of A035123.

Extensions

Corrected and extended by Joshua Zucker, May 12 2006

A140212 Numbers n not a multiple of 10 such that reverse(n^2) = reverse(n)^2, but reverse(n) is different from n.

Original entry on oeis.org

12, 13, 21, 31, 102, 103, 112, 113, 122, 201, 211, 221, 301, 311, 1002, 1003, 1011, 1012, 1013, 1021, 1022, 1031, 1101, 1102, 1103, 1112, 1113, 1121, 1122, 1201, 1202, 1211, 1212, 1301, 2001, 2011, 2012, 2021, 2022, 2101, 2102, 2111, 2121, 2201, 2202, 2211, 3001, 3011, 3101, 3111
Offset: 1

Views

Author

Jean-François Alcover, Mar 08 2011

Keywords

Comments

This sequence is similar to A035123 but excludes integers such as 33 or 99 or 3168, because they don't meet the commutativity criterion reverse(n^2) = (reverse(n))^2.
Compare for instance:
{reverse(3168^2), reverse(3168)^2} -> {42263001, 74183769}
with:
{reverse(3111^2), reverse(3111)^2} -> {1238769, 1238769}
Terms can be matched by pairs:
{{12, 21}, {13, 31}, {102, 201}, {103, 301}, {112, 211}, {113, 311}, {122, 221}, {1002, 2001}, {1003, 3001}, {1011, 1101}, {1012, 2101}, {1013, 3101}, {1021, 1201}, {1022, 2201}, {1031, 1301}, {1102, 2011}, {1103, 3011}, {1112, 2111}, {1113, 3111}, {1121, 1211}, {1122, 2211}, {1202, 2021}, {1212, 2121}, {2012, 2102}, {2022, 2202},...}

Examples

			113 belongs to the sequence because sqrt(reverse(113^2)) = 311, which is 113 written backwards, whereas 99 does not: sqrt(reverse(99^2)) = 33.
		

Crossrefs

Cf. A064021. Subsequence of A035123.

Programs

  • Mathematica
    r[n_] := FromDigits[Reverse[IntegerDigits[n]]];
    Cases[Range[10000], n_ /; Mod[n, 10] != 0 && r[n^2] != n^2 && r[n^2] == r[n]^2 ]

Formula

a(n)^2 = A064021(n). - Giovanni Resta, Jun 22 2018
Showing 1-5 of 5 results.