cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A106326 Smallest odd semiprime not less than n.

Original entry on oeis.org

9, 9, 9, 9, 9, 9, 9, 9, 9, 15, 15, 15, 15, 15, 15, 21, 21, 21, 21, 21, 21, 25, 25, 25, 25, 33, 33, 33, 33, 33, 33, 33, 33, 35, 35, 39, 39, 39, 39, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 51, 51, 55, 55, 55, 55, 57, 57, 65, 65, 65, 65, 65, 65, 65, 65, 69, 69, 69, 69, 77, 77, 77
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 29 2005

Keywords

Comments

a(A046315(n)) = A046315(n).

Crossrefs

Cf. A106325.

Programs

  • Mathematica
    sos[n_]:=Module[{s=If[OddQ[n],n,n+1]},While[PrimeOmega[s]!=2,s=s+2];s]; Table[sos[n],{n,80}] (* Harvey P. Dale, Jun 14 2015 *)

A173717 Sum of n mod m, summed over semiprimes m = 4, 6, 9, ..., smallest semiprime >= n.

Original entry on oeis.org

1, 2, 3, 0, 6, 2, 11, 10, 4, 7, 22, 17, 22, 13, 18, 36, 43, 35, 42, 35, 21, 28, 59, 58, 42, 51, 79, 72, 83, 63, 74, 81, 59, 70, 82, 112, 126, 102, 116, 157, 173, 148, 164, 154, 146, 116, 179, 186, 154, 186, 153, 193, 212, 216, 180, 237, 200, 220, 300, 287, 309, 269, 324, 343, 301, 329, 353, 339
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 25 2010

Keywords

Crossrefs

Cf. A106325.

Programs

  • Maple
    A173717 := proc(n) a := 0 ; for i from 1 do s := A001358(i) ; a := a + (n mod s) ;  if s >= n then return a; end if; end do: end proc: # R. J. Mathar, Nov 26 2010

Extensions

Corrected by R. J. Mathar, Nov 26 2010

A179464 a(n) = min(nextprime(n),nextsemiprime(n)).

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 9, 9, 10, 11, 13, 13, 14, 15, 17, 17, 19, 19, 21, 21, 22, 23, 25, 25, 26, 29, 29, 29, 31, 31, 33, 33, 34, 35, 37, 37, 38, 39, 41, 41, 43, 43, 46, 46, 46, 47, 49, 49, 51, 51, 53, 53, 55, 55, 57, 57, 58, 59, 61, 61, 62, 65, 65, 65, 67, 67, 69, 69, 71, 71, 73, 73, 74, 77, 77, 77, 79, 79, 82, 82, 82, 83, 85, 85, 86, 87, 89, 89, 91, 91, 93, 93, 94
Offset: 1

Views

Author

Zak Seidov, Jan 08 2011

Keywords

Examples

			n=1: nextprime(1)=2, nextsemiprime(1)=4, hence a(1)=2,
n=2: nextprime(2)=3, nextsemiprime(2)=4, hence a(2)=3,
n=3: nextprime(3)=5, nextsemiprime(3)=4, hence a(3)=4.
		

Crossrefs

Cf. A000040 The prime numbers, A001358 Semiprimes.

Programs

  • Maple
    PS:= select(t -> numtheory:-bigomega(t)<=2, [$2..500]):
    Res:= NULL:
    k:= 1;
    for n from 2 to max(PS) do
      if n > PS[k] then k:= k+1 fi;
      Res:= Res, PS[k];
    od:
    Res; # Robert Israel, Oct 25 2017
  • Mathematica
    Table[m=n+1;While[2!= Plus@@Last/@FactorInteger[m],m++];Min[NextPrime[n],m],{n,200}]
    mnp[n_]:=Module[{s=n+1},While[PrimeOmega[s]!=2,s++];Min[NextPrime[n],s]]; Array[mnp,100] (* Harvey P. Dale, Apr 23 2019 *)
  • PARI
    {for(n=1,200,m=n+1;while(2<>bigomega(m),m++);print(min(nextprime(n+1),m)))}

Formula

a(n) = min(A106325(n+1), A151800(n)). - Robert Israel, Oct 25 2017

A200927 Difference between (least semiprime >= n) and (largest semiprime <= n).

Original entry on oeis.org

0, 2, 0, 3, 3, 0, 0, 4, 4, 4, 0, 0, 6, 6, 6, 6, 6, 0, 0, 3, 3, 0, 0, 7, 7, 7, 7, 7, 7, 0, 0, 0, 3, 3, 0, 0, 7, 7, 7, 7, 7, 7, 0, 3, 3, 0, 2, 0, 4, 4, 4, 0, 2, 0, 0, 4, 4, 4, 0, 3, 3, 0, 4, 4, 4, 0, 5, 5, 5, 5, 0, 3, 3, 0, 5, 5, 5, 5, 0, 3, 3, 0, 0, 0, 4, 4, 4
Offset: 4

Views

Author

Arkadiusz Wesolowski, Nov 24 2011

Keywords

Comments

a(n) = 0 if and only if n is semiprime.

Crossrefs

Programs

  • Maple
    A106325 := proc(n)
        for a from n do
            if numtheory[bigomega](a) = 2 then
                return a;
            end if;
        end do:
    end proc;
    prevSpr := proc(n)
        for a from n by -1 do
            if numtheory[bigomega](a) = 2 then
                return a;
            end if;
        end do:
    end proc;
    A200927 := proc(n)
        A106325(n)-prevSpr(n) ;
    end proc:
    seq(A200927(n),n=4..80) ; # R. J. Mathar, Nov 26 2011
  • Mathematica
    Table[a = b = 0; While[! PrimeOmega[n - a] == 2, a++]; While[! PrimeOmega[n + b] == 2, b++]; a + b, {n, 4, 100}]

A379407 a(n) is the smallest semiprime > primorial(n).

Original entry on oeis.org

4, 9, 33, 213, 2315, 30031, 510515, 9699691, 223092871, 6469693233, 200560490134, 7420738134814, 304250263527221, 13082761331670031, 614889782588491414, 32589158477190044737, 1922760350154212639074, 117288381359406970983271, 7858321551080267055879091
Offset: 1

Views

Author

Alexandre Herrera, Dec 22 2024

Keywords

Examples

			primorial(2) = 2*3 = 6 so a(2) = 9 because 9 = 3*3 is next semiprime > 6.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{m = Times @@ Prime[Range[n]] + 1}, While[PrimeOmega[m] != 2, m++]; m]; Array[a, 20] (* Amiram Eldar, Jan 01 2025 *)
  • Python
    import sympy
    def ok(n): return sum(sympy.factorint(n).values()) == 2
    primorial = 1
    l = []
    for i in range(1,20):
        primorial *= sympy.prime(i)
        next_sp = primorial + 1
        while not(ok(next_sp)):
            next_sp += 1
        l.append(next_sp)
    print(l)

Formula

a(n) = A106325(A002110(n)+1).
Showing 1-5 of 5 results.