A106491 Total number of bases and exponents in Quetian Superfactorization of n, including the unity-exponents at the tips of branches.
1, 2, 2, 3, 2, 4, 2, 3, 3, 4, 2, 5, 2, 4, 4, 4, 2, 5, 2, 5, 4, 4, 2, 5, 3, 4, 3, 5, 2, 6, 2, 3, 4, 4, 4, 6, 2, 4, 4, 5, 2, 6, 2, 5, 5, 4, 2, 6, 3, 5, 4, 5, 2, 5, 4, 5, 4, 4, 2, 7, 2, 4, 5, 5, 4, 6, 2, 5, 4, 6, 2, 6, 2, 4, 5, 5, 4, 6, 2, 6, 4, 4, 2, 7, 4, 4, 4, 5, 2, 7, 4, 5, 4, 4, 4, 5, 2, 5, 5, 6, 2, 6
Offset: 1
Keywords
Examples
a(64) = 5, as 64 = 2^6 = 2^(2^1*3^1) and there are 5 nodes in that superfactorization. Similarly, for 360 = 2^(3^1) * 3^(2^1) * 5^1 we get a(360) = 8. See comments at A106490.
Links
Programs
-
Maple
a:= proc(n) option remember; `if`(n=1, 1, add(1+a(i[2]), i=ifactors(n)[2])) end: seq(a(n), n=1..100); # Alois P. Heinz, Nov 07 2014
-
Mathematica
a[n_] := a[n] = If[n == 1, 1, Sum[1 + a[i[[2]]], {i, FactorInteger[n]}]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *)
-
PARI
A067029(n) = if(n<2, 0, factor(n)[1,2]); A028234(n) = my(f = factor(n)); if (#f~, f[1, 1] = 1); factorback(f); /* after Michel Marcus */ a(n) = if(n<2, 1, if(A028234(n)==1, 1 + a(A067029(n)), 1 + a(A067029(n)) + a(A028234(n)))); for(n=1, 150, print1(a(n),", ")) \\ Indranil Ghosh, Mar 23 2017, after formula by Antti Karttunen