A106490 Total number of bases and exponents in Quetian Superfactorization of n, excluding the unity-exponents at the tips of branches.
0, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 3, 1, 3, 1, 3, 2, 2, 1, 3, 2, 2, 2, 3, 1, 3, 1, 2, 2, 2, 2, 4, 1, 2, 2, 3, 1, 3, 1, 3, 3, 2, 1, 4, 2, 3, 2, 3, 1, 3, 2, 3, 2, 2, 1, 4, 1, 2, 3, 3, 2, 3, 1, 3, 2, 3, 1, 4, 1, 2, 3, 3, 2, 3, 1, 4, 3, 2, 1, 4, 2, 2, 2, 3, 1, 4, 2, 3, 2, 2, 2, 3, 1, 3, 3, 4, 1, 3
Offset: 1
Keywords
Examples
a(64) = 3, as 64 = 2^6 = 2^(2^1*3^1) and there are three non-1 nodes in that superfactorization. Similarly, for 360 = 2^(3^1) * 3^(2^1) * 5^1 we get a(360) = 5. a(65536) = a(2^(2^(2^(2^1)))) = 4.
Links
Crossrefs
Programs
-
Maple
a:= proc(n) option remember; `if`(n=1, 0, add(1+a(i[2]), i=ifactors(n)[2])) end: seq(a(n), n=1..100); # Alois P. Heinz, Nov 07 2014
-
Mathematica
a[n_] := a[n] = If[n == 1, 0, Sum[1 + a[i[[2]]], {i,FactorInteger[n]}]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *)
-
PARI
A067029(n) = if(n<2, 0, factor(n)[1,2]); A028234(n) = my(f = factor(n)); if (#f~, f[1, 1] = 1); factorback(f); /* after Michel Marcus */ a(n) = if(n<2, 0, 1 + a(A067029(n)) + a(A028234(n))); for(n=1, 150, print1(a(n),", ")) \\ Indranil Ghosh, Mar 23 2017, after formula by Antti Karttunen
Comments