cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106517 Convolution of Fibonacci(n-1) and 3^n.

Original entry on oeis.org

1, 3, 10, 31, 95, 288, 869, 2615, 7858, 23595, 70819, 212512, 637625, 1913019, 5739290, 17218247, 51655351, 154967040, 464902717, 1394710735, 4184136386, 12552415923, 37657258715, 112971793856, 338915410225, 1016746277043
Offset: 0

Views

Author

Paul Barry, May 05 2005

Keywords

Crossrefs

Diagonal sums of number triangle A106516.

Programs

  • Magma
    I:=[1,3,10]; [n le 3 select I[n] else 4*Self(n-1) -2*Self(n-2) -3*Self(n-3): n in [1..41]]; // G. C. Greubel, Aug 05 2021
    
  • Mathematica
    LinearRecurrence[{4,-2,-3},{1,3,10},30] (* Harvey P. Dale, Oct 08 2014 *)
  • PARI
    a(n) = sum(k=0, n, fibonacci(n-k-1) * 3^k); \\ Michel Marcus, Aug 06 2021
  • Sage
    [(2*3^(n+1) - lucas_number2(n+1, 1, -1))/5 for n in (0..40)] # G. C. Greubel, Aug 05 2021
    

Formula

G.f.: (1-x)/((1-x-x^2)*(1-3*x)).
a(n) = Sum_{k=0..n} Fibonacci(n-k-1) * 3^k.
a(n) = A101220(2, 3, n+1). - Ross La Haye, Jul 25 2005
a(n) = A101220(3, 3, n+1) - A101220(3, 3, n). - Ross La Haye, May 31 2006
a(n) = (1/5)*(6*3^n - Lucas(n+1)). - Ralf Stephan, Nov 16 2010
Sum_{k=0..n} a(k) = A094688(n+1). - G. C. Greubel, Aug 05 2021