A107123
Numbers k such that (10^(2*k+1)+18*10^k-1)/9 is prime.
Original entry on oeis.org
0, 1, 2, 19, 97, 9818
Offset: 1
19 is in the sequence because the palindromic number (10^(2*19+1)+18*10^19-1)/9 = 1(19).3.1(19) = 111111111111111111131111111111111111111 is prime.
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
-
select(n -> isprime((10^(2*n+1)+18*10^n-1)/9), [$0..100]); # Robert Israel, Jun 11 2015
-
Do[If[PrimeQ[(10^(2n + 1) + 18*10^n - 1)/9], Print[n]], {n, 2500}]
-
for(n=0,1e4,if(ispseudoprime(t=(10^(2*n+1)+18*10^n)\9),print1(t", "))) \\ Charles R Greathouse IV, Jul 15 2011
A332116
a(n) = (10^(2n+1)-1)/9 + 5*10^n.
Original entry on oeis.org
6, 161, 11611, 1116111, 111161111, 11111611111, 1111116111111, 111111161111111, 11111111611111111, 1111111116111111111, 111111111161111111111, 11111111111611111111111, 1111111111116111111111111, 111111111111161111111111111, 11111111111111611111111111111, 1111111111111116111111111111111
Offset: 0
- Patrick De Geest, Palindromic Wing Primes: (1)6(1), updated: June 25, 2017.
- Brady Haran and Simon Pampena, Glitch Primes and Cyclops Numbers, Numberphile video (2015).
- Makoto Kamada, Factorization of 11...11611...11, updated Dec 11 2018.
- Index entries for linear recurrences with constant coefficients, signature (111,-1110,1000).
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332126 ..
A332196 (variants with different repeated digit 2, ..., 9).
Cf.
A332112 ..
A332119 (variants with different middle digit 2, ..., 9).
-
A332116 := n -> (10^(2*n+1)-1)/9+5*10^n;
-
Array[(10^(2 # + 1)-1)/9 + 5*10^# &, 15, 0]
-
apply( {A332116(n)=10^(n*2+1)\9+5*10^n}, [0..15])
-
def A332116(n): return 10**(n*2+1)//9+5*10**n
A077787
Numbers k such that (10^k - 1)/9 + 5*10^floor(k/2) is a palindromic wing prime (a.k.a. near-repdigit palindromic prime).
Original entry on oeis.org
21, 29, 81, 119, 321, 825, 1121, 2579, 3693
Offset: 1
21 is a term because (10^21 - 1)/9 + 5*10^10 = 111111111161111111111.
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
-
Do[ If[ PrimeQ[(10^n + 45*10^Floor[n/2] - 1)/9], Print[n]], {n, 3, 4000, 2}] (* Robert G. Wilson v, Dec 16 2005 *)
Showing 1-3 of 3 results.
Comments