cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A107123 Numbers k such that (10^(2*k+1)+18*10^k-1)/9 is prime.

Original entry on oeis.org

0, 1, 2, 19, 97, 9818
Offset: 1

Views

Author

Farideh Firoozbakht, May 19 2005

Keywords

Comments

A number k is in the sequence iff the palindromic number 1(k).3.1(k) is prime (1(k) means k copies of 1; dot between numbers means concatenation). If k is a positive term of the sequence then k is not of the form 3m, 6m+4, 12m+10, 28m+5, 28m+8, etc. (the proof is easy).
The palindromic number 1(k).2.1(k) is never prime for k > 0 because it is (1.0(k-1).1)*(1(k+1)). - Robert Israel, Jun 11 2015
a(7) > 10^5. - Robert Price, Apr 02 2016

Examples

			19 is in the sequence because the palindromic number (10^(2*19+1)+18*10^19-1)/9 = 1(19).3.1(19) = 111111111111111111131111111111111111111 is prime.
		

References

  • C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.

Crossrefs

Programs

  • Maple
    select(n -> isprime((10^(2*n+1)+18*10^n-1)/9), [$0..100]); # Robert Israel, Jun 11 2015
  • Mathematica
    Do[If[PrimeQ[(10^(2n + 1) + 18*10^n - 1)/9], Print[n]], {n, 2500}]
  • PARI
    for(n=0,1e4,if(ispseudoprime(t=(10^(2*n+1)+18*10^n)\9),print1(t", "))) \\ Charles R Greathouse IV, Jul 15 2011

Formula

a(n) = (A077779(n-1)-1)/2, for n > 1. [Corrected by M. F. Hasler, Feb 06 2020]

Extensions

Edited by Ray Chandler, Dec 28 2010

A332116 a(n) = (10^(2n+1)-1)/9 + 5*10^n.

Original entry on oeis.org

6, 161, 11611, 1116111, 111161111, 11111611111, 1111116111111, 111111161111111, 11111111611111111, 1111111116111111111, 111111111161111111111, 11111111111611111111111, 1111111111116111111111111, 111111111111161111111111111, 11111111111111611111111111111, 1111111111111116111111111111111
Offset: 0

Views

Author

M. F. Hasler, Feb 09 2020

Keywords

Comments

See A107126 = {10, 14, 40, 59, 160, 412, ...} for the indices of primes.

Crossrefs

Cf. (A077706-1)/2 = A107126: indices of primes.
Cf. A002275 (repunits R_n = (10^n-1)/9), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332126 .. A332196 (variants with different repeated digit 2, ..., 9).
Cf. A332112 .. A332119 (variants with different middle digit 2, ..., 9).

Programs

  • Maple
    A332116 := n -> (10^(2*n+1)-1)/9+5*10^n;
  • Mathematica
    Array[(10^(2 # + 1)-1)/9 + 5*10^# &, 15, 0]
  • PARI
    apply( {A332116(n)=10^(n*2+1)\9+5*10^n}, [0..15])
    
  • Python
    def A332116(n): return 10**(n*2+1)//9+5*10**n

Formula

a(n) = A138148(n) + 6*10^n = A002275(2n+1) + 5*10^n.
G.f.: (6 - 505*x + 400*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.
E.g.f.: exp(x)*(10*exp(99*x) + 45*exp(9*x) - 1)/9. - Stefano Spezia, Jul 13 2024

A077787 Numbers k such that (10^k - 1)/9 + 5*10^floor(k/2) is a palindromic wing prime (a.k.a. near-repdigit palindromic prime).

Original entry on oeis.org

21, 29, 81, 119, 321, 825, 1121, 2579, 3693
Offset: 1

Views

Author

Patrick De Geest, Nov 16 2002

Keywords

Comments

Prime versus probable prime status and proofs are given in the author's table.
a(10) > 4*10^5. - _Robert Price, Jan 23 2025

Examples

			21 is a term because (10^21 - 1)/9 + 5*10^10 = 111111111161111111111.
		

References

  • C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.

Crossrefs

Programs

  • Mathematica
    Do[ If[ PrimeQ[(10^n + 45*10^Floor[n/2] - 1)/9], Print[n]], {n, 3, 4000, 2}] (* Robert G. Wilson v, Dec 16 2005 *)

Formula

a(n) = 2*A107126(n) + 1.

Extensions

Name corrected by Jon E. Schoenfield, Oct 31 2018
Showing 1-3 of 3 results.