A107181 Primes of the form 8x^2 + 9y^2.
17, 41, 89, 113, 137, 233, 257, 281, 353, 401, 449, 521, 569, 593, 617, 641, 761, 809, 857, 881, 929, 953, 977, 1049, 1097, 1193, 1217, 1289, 1361, 1409, 1433, 1481, 1553, 1601, 1697, 1721, 1889, 1913, 2081, 2129, 2153, 2273, 2297, 2393, 2417
Offset: 1
Links
- Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Programs
-
Magma
[ p: p in PrimesUpTo(5000) | p mod 24 eq 17 ]; // Vincenzo Librandi, Apr 19 2011
-
Mathematica
QuadPrimes2[8, 0, 9, 10000] (* see A106856 *)
-
PARI
list(lim)=my(v=List()); forprime(p=17,lim, if(p%24==17, listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Feb 10 2017
Formula
The primes are congruent to 17 (mod 24). - T. D. Noe, May 02 2008
Comments