A107241 Sum of squares of first n tetranacci numbers (A000288).
1, 2, 3, 4, 20, 69, 238, 863, 3264, 12100, 44861, 166662, 619591, 2301800, 8551800, 31774561, 118060082, 438649107, 1629796276, 6055504952, 22499207241, 83595676570, 310599326171, 1154030334396, 4287794153932, 15931278338957
Offset: 1
Examples
a(1) = 1^2 = 1. a(2) = 1^2 + 1^2 = 1. a(3) = 1^2 + 1^2 + 1^2 = 3, prime. a(4) = 1^2 + 1^2 + 1^2 + 1^2 = 4 = 2^2, semiprime. a(5) = 1^2 + 1^2 + 1^2 + 1^2 + 4^2 = 20. a(6) = 1^2 + 1^2 + 1^2 + 1^2 + 4^2 + 7^2 = 69 = 3 * 23, semiprime. a(8) = 1^2 + 1^2 + 1^2 + 1^2 + 4^2 + 7^2 + 13^2 + 25^2 = 863, prime.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Fibonacci n-Step Number.
- Index entries for linear recurrences with constant coefficients, signature (3,2,2,6,-16,-2,6,-2,2,1,-1).
Crossrefs
Programs
-
Maple
T:= proc(n) option remember; if n=0 then 0 elif n<5 then 1 else add(T(n-j), j=1..4) fi; end: seq( add(T(k)^2, k=1..n), n=1..30); # G. C. Greubel, Dec 18 2019
-
Mathematica
Accumulate[LinearRecurrence[{1,1,1,1},{1,1,1,1},30]^2] (* Harvey P. Dale, Feb 14 2012 *) LinearRecurrence[{3,2,2,6,-16,-2,6,-2,2,1,-1}, {1,2,3,4,20,69,238,863,3264, 12100,44861}, 30] (* Ray Chandler, Aug 02 2015 *) T[n_]:= T[n]= If[n == 0, 0, If[n < 5, 1, Sum[T[n-j], {j,4}]]]; a[n_]:= Sum[T[j]^2, {j,n}]; Table[a[n], {n, 30}] (* G. C. Greubel, Dec 18 2019 *)
-
Sage
@CachedFunction def T(n): if (n==0): return 0 elif (n<5): return 1 else: return sum(T(n-j) for j in (1..4)) def a(n): return sum(T(j)^2 for j in (1..n)) [a(n) for n in (1..30)] # G. C. Greubel, Dec 18 2019
Formula
a(n) = Sum_{i=1..n} A000288(i)^2.
From R. J. Mathar, Aug 11 2009: (Start)
a(n) = 3*a(n-1) + 2*a(n-2) + 2*a(n-3) + 6*a(n-4) - 16*a(n-5) - 2*a(n-6) + 6*a(n-7) - 2*a(n-8) + 2*a(n-9) + a(n-10) - a(n-11).
G.f.: (1 - x - 5*x^2 - 11*x^3 - 8*x^4 - x^5 - x^6 - 7*x^7 + x^8 + 4*x^9)/((1 - x)*(1 - 3*x - 3*x^2 + x^3 + x^4)(1 + x + 2*x^2 + 2*x^3 - 2*x^4 + x^5 - x^6)). (End)
Comments