Original entry on oeis.org
0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 5, 7, 10, 14, 20, 28, 41, 59, 85, 122, 176, 254, 367, 529, 764, 1102, 1591, 2296, 3313, 4782, 6901, 9960, 14375, 20747, 29944, 43217, 62373, 90021, 129925, 187516, 270636, 390601, 563742, 813631, 1174288, 1694813, 2446070
Offset: 0
-
A107293 := proc(n)
option remember;
if n <=4 then
op(n+1,[0,0,0,0,1]) ;
else
procname(n-1)+procname(n-2)-procname(n-3)+procname(n-5) ;
end if;
end proc:
A173693 := proc(n)
ceil(A107293(n)/2) ;
end proc: # R. J. Mathar, Feb 18 2016
-
M = {{0, 1, 0, 0, 0},
{0, 0, 1, 0, 0},
{0, 0, 0, 1, 0},
{0, 0, 0, 0, 1},
{1, 0, -1, 1, 1}}
v[0] = {0, 0, 0, 0, 1}
v[n_] := v[n] = M.v[n - 1]
Table[v[n][[1]] - Floor[v[n][[1]]/2], {n, 0, 30}]
A185357
Expansion of 1/(1 - x - x^2 + x^18 - x^20).
Original entry on oeis.org
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4180, 6763, 10942, 17703, 28642, 46340, 74974, 121301, 196254, 317521, 513720, 831152, 1344728, 2175647, 3519998, 5695035, 9214046, 14907484, 24118947, 39022252, 63134437, 102145749
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- David Terr and Eric W. Weisstein, MathWorld: Pisot Number
- Index entries for linear recurrences with constant coefficients, signature (1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 1).
-
CoefficientList[Series[1/(1 - x - x^2 + x^18 - x^20), {x, 0, 50}], x]
-
Vec(1/(1-x-x^2+x^18-x^20) + O(x^50)) \\ G. C. Greubel, Nov 16 2016
A202907
Expand 1/(1 - (3/2)*x + (2/3)*x^4 - x^5) in powers of x, then multiply coefficient of x^n by 3^floor(n/4)*2^n to get integers.
Original entry on oeis.org
1, 3, 9, 27, 211, 633, 1899, 5697, 52297, 156891, 470673, 1412019, 12675403, 38026209, 114078627, 342235881, 3081171505, 9243514515, 27730543545, 83191630635, 748691121283, 2246073363849, 6738220091547
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,211,0,0,0,7776).
-
Table[3^Floor[k/4]*2^k*SeriesCoefficient[ Series[1/(1 - (3/2)* x + (2/3) x^4 - x^5), {x, 0, 30}], k], {k, 0, 30}] (* Bagula *)
a[ n_] := 2^n 3^Quotient[ n, 4] SeriesCoefficient[ 1 / (1 - 3/2 x + 2/3 x^4 - x^5), {x, 0, n}] (* Michael Somos, Jan 27 2012 *)
A225484
Expansion of 1/(1 - x^3 - x^4 - x^5 - x^6 + x^9).
Original entry on oeis.org
1, 0, 0, 1, 1, 1, 2, 2, 3, 4, 6, 8, 10, 14, 20, 26, 36, 49, 66, 90, 123, 167, 227, 308, 420, 571, 776, 1056, 1436, 1952, 2656, 3612, 4912, 6680, 9085, 12356, 16804, 22853, 31081, 42269, 57486, 78182, 106327, 144604
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,1,1,1,1,0,0,-1).
-
SeriesCoefficient[Series[1/(1 - x^3 - x^4 - x^5 - x^6 + x^9), {x, 0, 50}], n]
-
Vec(1/(1-x^3-x^4-x^5-x^6+x^9)+O(x^99)) \\ Charles R Greathouse IV, May 08 2013
A124445
Expansion of 1/(1-x-x*y+x^2*y-x^3*y^2).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 4, 5, 4, 1, 1, 1, 5, 7, 8, 5, 1, 1, 1, 6, 9, 13, 12, 6, 1, 1, 1, 7, 11, 19, 22, 17, 7, 1, 1, 1, 8, 13, 26, 35, 35, 23, 8, 1, 1, 1, 9, 15, 34, 51, 61, 53, 30, 9, 1
Offset: 0
Triangle begins:
1,
1, 1,
1, 1, 1,
1, 1, 2, 1,
1, 1, 3, 3, 1,
1, 1, 4, 5, 4, 1,
1, 1, 5, 7, 8, 5, 1,
1, 1, 6, 9, 13, 12, 6, 1,
1, 1, 7, 11, 19, 22, 17, 7, 1
A205961
Expansion of 1/(-32*x^5 + 8*x^3 - 4*x^2 - x + 1).
Original entry on oeis.org
1, 1, 5, 1, 13, 9, 85, 177, 477, 921, 1701, 4289, 9389, 28201, 60917, 153041, 308349, 733625, 1645125, 4062177, 9670989, 22625865, 52288405, 118067953, 276204317, 639640537, 1523941861
Offset: 0
-
CoefficientList[Series[1/(1 - x/2 - x^2 + x^3 - x^5), {x, 0, 50}], x] * 2^Range[0, 50]
LinearRecurrence[{1,4,-8,0,32}, {1,1,5,1,13}, 100] (* G. C. Greubel, Nov 16 2016 *)
-
for(n=0,30, print1(2^n*polcoeff(1/(1-x/2 - x^2 + x^3 - x^5) + O(x^32), n), ", ")) \\ G. C. Greubel, Nov 16 2016
A206568
Expand 1/(8 - 8 x + 3 x^3 - 2 x^4) in powers of x, then multiply coefficient of x^n by 8^(1 + floor(n/3)) to get integers.
Original entry on oeis.org
1, 1, 1, 5, 4, 3, 25, 23, 22, 149, 130, 110, 785, 693, 623, 4389, 3880, 3397, 23977, 21115, 18684, 131893, 116502, 102680, 724705, 638985, 563949, 3980357, 3512812, 3098935, 21873593, 19295871, 17024690
Offset: 0
-
a:= n-> (<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <64|69|21|-1>>^ iquo(n, 3, 'r'). `if`(r=0, <<1, 5, 25, 149>>, `if`(r=1, <<1, 4, 23, 130>>, <<1, 3, 22, 110>>)))[1, 1]: seq (a(n), n=0..40); # Alois P. Heinz, Feb 11 2012
-
(* expansion*)
Table[8^(1 + Floor[n/3])*SeriesCoefficient[Series[1/(8 - 8 x + 3 x^3 - 2 x^4), {x, 0, 50}], n], {n, 0,50}]
(*recursion*)
a[1] = 1; a[2] = 1; a[3] = 1; a[4] = 5; a[5] = 4; a[6] = 3;
a[7] = 25; a[8] = 23; a[9] = 22; a[10] = 149; a[11] = 130;
a[12] = 110;
a[n_Integer?Positive] := a[n] = 64*a[-12 + n] + 69*a[-9 + n] + 21*a[-6 +n] - a[-3 + n]
Table[a[n], {n, 1, 50}]
A225490
Expansion of 1/(1 - x - x^2 + x^5 + x^6 - x^7).
Original entry on oeis.org
1, 1, 2, 3, 5, 7, 10, 15, 21, 30, 42, 60, 84, 118, 166, 233, 327, 458, 643, 901, 1263, 1770, 2481, 3477, 4872, 6828, 9568, 13408, 18788, 26328, 36893, 51697, 72442, 101511, 142245, 199323, 279306, 391383, 548433
Offset: 0
-
CoefficientList[Series[1/(1 - x - x^2 + x^5 + x^6 - x^7), {x, 0, 50}], x]
A225500
Expansion of 1/(1 - x - x^5 + x^6 - x^7 - x^11 + x^12).
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 15, 19, 25, 33, 43, 56, 73, 95, 124, 161, 210, 273, 355, 463, 603, 786, 1023, 1332, 1735, 2259, 2942, 3831, 4989, 6497, 8461, 11019, 14350, 18687, 24335, 31691, 41270, 53745
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,1,-1,1,0,0,0,1,-1).
-
CoefficientList[Series[1/(1 - x - x^5 + x^6 - x^7 - x^11 + x^12), {x, 0, 50}], x]
LinearRecurrence[{1,0,0,0,1,-1,1,0,0,0,1,-1},{1,1,1,1,1,2,2,3,4,5,7,9},100] (* G. C. Greubel, Nov 16 2016 *)
-
Vec(1/(1-x -x^5 +x^6 -x^7 -x^11 +x^12) + O(x^50)) \\ G. C. Greubel, Nov 16 2016
A107332
Expansion of x^2*(-1+x+x^2)/(-1+x+x^2-x^3+x^5).
Original entry on oeis.org
0, 1, 0, 0, -1, -1, -1, -1, -1, -2, -3, -5, -7, -10, -14, -20, -29, -42, -61, -88, -127, -183, -264, -381, -550, -794, -1146, -1654, -2387, -3445, -4972, -7176, -10357, -14948, -21574, -31137, -44939, -64859, -93609, -135103, -194990, -281423, -406169, -586211, -846060, -1221092, -1762364
Offset: 1
-
a[0]:=0:a[1]:=1:a[2]:=0:a[3]:=0:a[4]:=-1:
for n from 5 to 46 do a[n]:=a[n-1]+a[n-2]-a[n-3]+a[n-5] od:
seq(a[n],n=0..46);
-
LinearRecurrence[{1,1,-1,0,1},{0,1,0,0,-1},50] (* Harvey P. Dale, Oct 11 2015 *)
Showing 1-10 of 17 results.
Comments