cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A173693 a(n) = ceiling(A107293(n)/2).

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 5, 7, 10, 14, 20, 28, 41, 59, 85, 122, 176, 254, 367, 529, 764, 1102, 1591, 2296, 3313, 4782, 6901, 9960, 14375, 20747, 29944, 43217, 62373, 90021, 129925, 187516, 270636, 390601, 563742, 813631, 1174288, 1694813, 2446070
Offset: 0

Views

Author

Roger L. Bagula, Nov 25 2010

Keywords

Crossrefs

Cf. A107293.

Programs

  • Maple
    A107293 := proc(n)
        option remember;
        if n <=4 then
            op(n+1,[0,0,0,0,1]) ;
        else
            procname(n-1)+procname(n-2)-procname(n-3)+procname(n-5) ;
        end if;
    end proc:
    A173693 := proc(n)
        ceil(A107293(n)/2) ;
    end proc: # R. J. Mathar, Feb 18 2016
  • Mathematica
    M = {{0, 1, 0, 0, 0},
    {0, 0, 1, 0, 0},
    {0, 0, 0, 1, 0},
    {0, 0, 0, 0, 1},
    {1, 0, -1, 1, 1}}
    v[0] = {0, 0, 0, 0, 1}
    v[n_] := v[n] = M.v[n - 1]
    Table[v[n][[1]] - Floor[v[n][[1]]/2], {n, 0, 30}]

Formula

a(n) = A107293(n) - floor(A107293(n)/2) = ceiling(A107293(n)/2).
Conjecture: a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-5) + a(n-31) - a(n-32) - a(n-33) + a(n-34) - a(n-36). - R. J. Mathar, Feb 18 2016

A185357 Expansion of 1/(1 - x - x^2 + x^18 - x^20).

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4180, 6763, 10942, 17703, 28642, 46340, 74974, 121301, 196254, 317521, 513720, 831152, 1344728, 2175647, 3519998, 5695035, 9214046, 14907484, 24118947, 39022252, 63134437, 102145749
Offset: 0

Views

Author

Roger L. Bagula, Jan 21 2012

Keywords

Comments

Limiting ratio is 1.61791..., the real root of -1 + x^2 - x^18 - x^19 + x^20. Signature in Mathematica is:
-CoefficientList[1 - x - x^2 + x^18 - x^20, x]
{-1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 1}.
The sequence agrees with the Fibonacci numbers (A000045) for the first 18 terms.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/(1 - x - x^2 + x^18 - x^20), {x, 0, 50}], x]
  • PARI
    Vec(1/(1-x-x^2+x^18-x^20) + O(x^50)) \\ G. C. Greubel, Nov 16 2016

A202907 Expand 1/(1 - (3/2)*x + (2/3)*x^4 - x^5) in powers of x, then multiply coefficient of x^n by 3^floor(n/4)*2^n to get integers.

Original entry on oeis.org

1, 3, 9, 27, 211, 633, 1899, 5697, 52297, 156891, 470673, 1412019, 12675403, 38026209, 114078627, 342235881, 3081171505, 9243514515, 27730543545, 83191630635, 748691121283, 2246073363849, 6738220091547
Offset: 0

Views

Author

Roger L. Bagula, Jan 27 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Table[3^Floor[k/4]*2^k*SeriesCoefficient[ Series[1/(1 - (3/2)* x + (2/3) x^4 - x^5), {x, 0, 30}], k], {k, 0, 30}] (* Bagula *)
    a[ n_] := 2^n 3^Quotient[ n, 4] SeriesCoefficient[ 1 / (1 - 3/2 x + 2/3 x^4 - x^5), {x, 0, n}] (* Michael Somos, Jan 27 2012 *)

Formula

From Chai Wah Wu, Aug 01 2020: (Start)
a(n) = 211*a(n-4) + 7776*a(n-8) for n > 7.
G.f.: -(3*x + 1)*(9*x^2 + 1)/(7776*x^8 + 211*x^4 - 1). (End)

A225484 Expansion of 1/(1 - x^3 - x^4 - x^5 - x^6 + x^9).

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 2, 2, 3, 4, 6, 8, 10, 14, 20, 26, 36, 49, 66, 90, 123, 167, 227, 308, 420, 571, 776, 1056, 1436, 1952, 2656, 3612, 4912, 6680, 9085, 12356, 16804, 22853, 31081, 42269, 57486, 78182, 106327, 144604
Offset: 0

Views

Author

Roger L. Bagula, May 08 2013

Keywords

Comments

Limiting ratio is 1.3599997117115008..., the largest real root of 1 - x^3 - x^4 - x^5 - x^6 + x^9 = 0.

Crossrefs

Programs

  • Mathematica
    SeriesCoefficient[Series[1/(1 - x^3 - x^4 - x^5 - x^6 + x^9), {x, 0, 50}], n]
  • PARI
    Vec(1/(1-x^3-x^4-x^5-x^6+x^9)+O(x^99)) \\ Charles R Greathouse IV, May 08 2013

A124445 Expansion of 1/(1-x-x*y+x^2*y-x^3*y^2).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 4, 5, 4, 1, 1, 1, 5, 7, 8, 5, 1, 1, 1, 6, 9, 13, 12, 6, 1, 1, 1, 7, 11, 19, 22, 17, 7, 1, 1, 1, 8, 13, 26, 35, 35, 23, 8, 1, 1, 1, 9, 15, 34, 51, 61, 53, 30, 9, 1
Offset: 0

Views

Author

Paul Barry, Nov 01 2006

Keywords

Comments

Row sums are A107293(n+4). Diagonal sums are A005314(n+1).
Reversal of A124279. T(2n,n) is A002426. - Paul Barry, Nov 01 2006

Examples

			Triangle begins:
1,
1, 1,
1, 1, 1,
1, 1, 2, 1,
1, 1, 3, 3, 1,
1, 1, 4, 5, 4, 1,
1, 1, 5, 7, 8, 5, 1,
1, 1, 6, 9, 13, 12, 6, 1,
1, 1, 7, 11, 19, 22, 17, 7, 1
		

Crossrefs

Cf. A180562.

Formula

Number triangle T(n,k)=sum{j=0..n, C(j,k-j)*C(n-k,k-j)}*[k<=n];
T(n,k) = T(n-1,k) + T(n-1,k-1) - T(n-2,k-1) + T(n-3,k-2), T(0,0) = T(1,0) = T(1,1) = T(2,0) = T(2,1) = T(2,2) = 1, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Mar 25 2014

A205961 Expansion of 1/(-32*x^5 + 8*x^3 - 4*x^2 - x + 1).

Original entry on oeis.org

1, 1, 5, 1, 13, 9, 85, 177, 477, 921, 1701, 4289, 9389, 28201, 60917, 153041, 308349, 733625, 1645125, 4062177, 9670989, 22625865, 52288405, 118067953, 276204317, 639640537, 1523941861
Offset: 0

Views

Author

Roger L. Bagula, Feb 02 2012

Keywords

Comments

Previous name was: Expand 1/(1 - x/2 - x^2 + x^3 - x^5) in powers of x, then multiply coefficient of x^n by 2^n to get integers.
The sequence is from -1 + x^2 - x^3 - x^4/2 + x^5 with real root 1.1647612555333289.
The limiting ratio of successive terms is 2*1.1647612555333289.
Recurrence: -32 *a (n) + 8 *a (n + 2) - 4 *a (n + 4) + a (n + 5) == 0; with a (1) == 1; a (2) == 1; a (3) == 5; a (4) == 1; a (5) == 13 (from FindSequenceFunction[]).

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/(1 - x/2 - x^2 + x^3 - x^5), {x, 0, 50}], x] * 2^Range[0, 50]
    LinearRecurrence[{1,4,-8,0,32}, {1,1,5,1,13}, 100] (* G. C. Greubel, Nov 16 2016 *)
  • PARI
    for(n=0,30, print1(2^n*polcoeff(1/(1-x/2 - x^2 + x^3 - x^5) + O(x^32), n), ", ")) \\ G. C. Greubel, Nov 16 2016

Extensions

New name from Joerg Arndt, Nov 19 2016

A206568 Expand 1/(8 - 8 x + 3 x^3 - 2 x^4) in powers of x, then multiply coefficient of x^n by 8^(1 + floor(n/3)) to get integers.

Original entry on oeis.org

1, 1, 1, 5, 4, 3, 25, 23, 22, 149, 130, 110, 785, 693, 623, 4389, 3880, 3397, 23977, 21115, 18684, 131893, 116502, 102680, 724705, 638985, 563949, 3980357, 3512812, 3098935, 21873593, 19295871, 17024690
Offset: 0

Views

Author

Roger L. Bagula, Feb 09 2012

Keywords

Comments

Bob Hanlon (hanlonr(AT)cox.net) helped convert the expansion to a recursion.

Crossrefs

Programs

  • Maple
    a:= n-> (<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <64|69|21|-1>>^ iquo(n, 3, 'r'). `if`(r=0, <<1, 5, 25, 149>>, `if`(r=1, <<1, 4, 23, 130>>, <<1, 3, 22, 110>>)))[1, 1]: seq (a(n), n=0..40); # Alois P. Heinz, Feb 11 2012
  • Mathematica
    (* expansion*)
    Table[8^(1 + Floor[n/3])*SeriesCoefficient[Series[1/(8 - 8 x + 3 x^3 - 2 x^4), {x, 0, 50}], n], {n, 0,50}]
    (*recursion*)
    a[1] = 1; a[2] = 1; a[3] = 1; a[4] = 5; a[5] = 4; a[6] = 3;
    a[7] = 25; a[8] = 23; a[9] = 22; a[10] = 149; a[11] = 130;
    a[12] = 110;
    a[n_Integer?Positive] := a[n] = 64*a[-12 + n] + 69*a[-9 + n] + 21*a[-6 +n] - a[-3 + n]
    Table[a[n], {n, 1, 50}]

Formula

G.f.: (-4*x^8-6*x^7-9*x^6-4*x^5-5*x^4-6*x^3-x^2-x-1) / (64*x^12 +69*x^9 +21*x^6 -x^3-1).

A225490 Expansion of 1/(1 - x - x^2 + x^5 + x^6 - x^7).

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 10, 15, 21, 30, 42, 60, 84, 118, 166, 233, 327, 458, 643, 901, 1263, 1770, 2481, 3477, 4872, 6828, 9568, 13408, 18788, 26328, 36893, 51697, 72442, 101511, 142245, 199323, 279306, 391383, 548433
Offset: 0

Views

Author

Roger L. Bagula, May 08 2013

Keywords

Comments

Limiting ratio is 1.401268367939855..., the largest real root of -1 + x + x^2 - x^5 - x^6 + x^7.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/(1 - x - x^2 + x^5 + x^6 - x^7), {x, 0, 50}], x]

A225500 Expansion of 1/(1 - x - x^5 + x^6 - x^7 - x^11 + x^12).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 15, 19, 25, 33, 43, 56, 73, 95, 124, 161, 210, 273, 355, 463, 603, 786, 1023, 1332, 1735, 2259, 2942, 3831, 4989, 6497, 8461, 11019, 14350, 18687, 24335, 31691, 41270, 53745
Offset: 0

Views

Author

Roger L. Bagula, May 09 2013

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/(1 - x - x^5 + x^6 - x^7 - x^11 + x^12), {x, 0, 50}], x]
    LinearRecurrence[{1,0,0,0,1,-1,1,0,0,0,1,-1},{1,1,1,1,1,2,2,3,4,5,7,9},100] (* G. C. Greubel, Nov 16 2016 *)
  • PARI
    Vec(1/(1-x -x^5 +x^6 -x^7 -x^11 +x^12) + O(x^50)) \\ G. C. Greubel, Nov 16 2016

A107332 Expansion of x^2*(-1+x+x^2)/(-1+x+x^2-x^3+x^5).

Original entry on oeis.org

0, 1, 0, 0, -1, -1, -1, -1, -1, -2, -3, -5, -7, -10, -14, -20, -29, -42, -61, -88, -127, -183, -264, -381, -550, -794, -1146, -1654, -2387, -3445, -4972, -7176, -10357, -14948, -21574, -31137, -44939, -64859, -93609, -135103, -194990, -281423, -406169, -586211, -846060, -1221092, -1762364
Offset: 1

Views

Author

Roger L. Bagula, Jun 08 2005

Keywords

Programs

  • Maple
    a[0]:=0:a[1]:=1:a[2]:=0:a[3]:=0:a[4]:=-1:
    for n from 5 to 46 do a[n]:=a[n-1]+a[n-2]-a[n-3]+a[n-5] od:
    seq(a[n],n=0..46);
  • Mathematica
    LinearRecurrence[{1,1,-1,0,1},{0,1,0,0,-1},50] (* Harvey P. Dale, Oct 11 2015 *)

Formula

a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-5) for n>=5.
O.g.f.: x^2*(-1+x+x^2)/(-1+x+x^2-x^3+x^5). - R. J. Mathar, Dec 02 2007
a(n) = A107293(n+2)-A107293(n+1)-A107293(n). - R. J. Mathar, Dec 17 2017

Extensions

Edited by N. J. A. Sloane, May 13 2006
New name using g.f. from Joerg Arndt, Dec 26 2022
Showing 1-10 of 17 results. Next