cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107354 To compute a(n) we first write down 2^n 1's in a row. Each row takes the right half of the previous row and each element in it equals sum of the elements in the previous row starting at the middle. The single element in the last row is a(n).

Original entry on oeis.org

1, 1, 2, 7, 44, 516, 11622, 512022, 44588536, 7718806044, 2664170119608, 1836214076324153, 2529135272371085496, 6964321029630556852944, 38346813253279804426846032, 422247020982575523983378003936, 9298487213328788062025571134762096
Offset: 0

Views

Author

Max Alekseyev, May 24 2005

Keywords

Comments

Number of subpartitions of partition [1,3,7,...,2^n-1]. - Franklin T. Adams-Watters, Mar 11 2006
Can also be computed summing forwards:
1
1,1
1,2,2, 2
1,3,5, 7, 7, 7, 7, 7
1,4,9,16,23,30,37,44,44,44,44,44,44,44,44,44

Examples

			For n=4, the array looks like this:
  1..1..1..1..1..1..1..1..1..1..1..1..1..1..1..1
  ........................1..2..3..4..5..6..7..8
  ....................................5.11.18.26
  .........................................18.44
  ............................................44
  Therefore a(4)=44.
For n=5, we can illustrate the recurrence by:
a(5) = 516 = C(19, 4) - ( 1*C(17, 4) + 2*C(14, 3) + 7*C(9, 2) ) = C(16+4-1, 4) - ( 1*C(16-2+4-1, 4) + 2*C(16-4+3-1, 3) + 7*C(16-8+2-1, 2) ).
		

Crossrefs

Cf. A105996; variants: A109055 - A109061; subpartitions defined: A115728, A115729.
Column k=2 of A355576.

Programs

  • Haskell
    a107354 n = head $ snd $ until ((== 1) . fst)
                                   f (2^n, replicate (2^n) 1) where
       f (len, xs) = (len', scanl1 (+) $ drop len' xs) where
          len' = len `div` 2
    -- Feasible only for small n.
    -- Reinhard Zumkeller, Nov 20 2011
  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, -add(
          a(j)*(-1)^(n-j)*binomial(2^j, n-j), j=0..n-1))
        end:
    seq(a(n), n=0..16);  # Alois P. Heinz, Jul 08 2022
  • Mathematica
    f[n_] := If[n == 0, 1, Binomial[2^(n - 1) + n - 2, n - 1] - Sum[ f[k]*Binomial[2^(n - 1) - 2^k + n - k - 1, n - k], {k, n - 2}]]; Table[ f[n], {n, 0, 15}] (* Robert G. Wilson v, May 25 2005 *)
    Table[NestWhile[Accumulate[Drop[#,Ceiling[Length[#]/2]]]&,PadRight[{},2^n+1,1], Length[ #]> 1&],{n,0,16}]//Flatten (* Harvey P. Dale, Jun 24 2018 *)
  • PARI
    {a(n)=if(n==0,1,binomial(2^(n-1)+n-2,n-1)- sum(k=1,n-2,a(k)*binomial(2^(n-1)-2^k+n-k-1,n-k)))} \\ Paul D. Hanna, May 24 2005
    
  • PARI
    {a(n)=polcoeff(x^n-sum(k=0, n-1, a(k)*x^k*(1-x+x*O(x^n))^(2^k-1) ), n)} \\ Paul D. Hanna, May 24 2005
    

Formula

a(n) = C(2^(n-1)+n-2,n-1) - Sum_{k=1..n-2} a(k)*C(2^(n-1)-2^k+n-k-1,n-k) for n>=2, with a(0)=1, a(1)=1, where C = binomial. - Paul D. Hanna, May 24 2005
The first number in row 3 is 2^(n-2)+1. - Ralf Stephan, May 24 2005
G.f.: 1/(1-x) = Sum_{n>=0} a(n)*x^n*(1-x)^(2^n-1) (g.f. of subpartitions). - Paul D. Hanna, Jul 03 2006
G.f.: 1 = Sum_{n>=0} a(n)*x^n/(1+x)^(2^n+n). - Paul D. Hanna, Jul 03 2006

Extensions

Edited by Paul D. Hanna, Jul 03 2006