cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107360 Numbers p (necessarily prime) such that 2^p - 1 is a Mersenne prime and (2^p+1)/3 is a Wagstaff prime.

Original entry on oeis.org

3, 5, 7, 13, 17, 19, 31, 61, 127
Offset: 1

Views

Author

Lekraj Beedassy, May 23 2005

Keywords

Comments

Intersection of A000043 and A000978.
'The New Mersenne Conjecture' (Bateman-Selfridge-Wagstaff) states that if two of the following statements about an odd positive integer p are true, then the third one is also true: (a) p = 2^k +- 1 or p = 4^k +- 3, (b) 2^p - 1 is prime, (c) (2^p + 1)/3 is prime. (Amer Math Monthly, 96 (1989) p. 125.) - R. K. Guy, May 20 2005
The next term, if it exists, is not any currently known Mersenne prime exponent or Wagstaff prime exponent: it must be larger than A000043(48) = 57885161 and cannot be 74207281, 77232917, or 82589933. See Caldwell and both Wanless links. The New Mersenne Conjecture would require this sequence to be a subsequence of A122834, in which case the next term could not be less than A122834(28) = 2305843009213693951. See Caldwell and Höglund links. - Gord Palameta, Jun 28 2019, Jun 29 2024
p either has the form 2^k -+ 1 or the form 4^k -+ 3, according to the New Mersenne Conjecture. - Lekraj Beedassy, Sep 20 2006
Primes p such that (4^p - 1)/3 is a semiprime. - Arkadiusz Wesolowski, Jun 01 2013
Numbers m != 4 such that (4^m - 1)/3 is a semiprime. - Thomas Ordowski, Sep 25 2015
The indices of Wagstaff primes relating to the new Mersenne conjecture A122834 in a list of Jacobsthal numbers A001045. - Steve Homewood, Dec 01 2020

References

  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 83.

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(500) | IsPrime(2^p-1) and IsPrime((2^p+1) div 3)]; // Vincenzo Librandi, Sep 25 2015
    
  • Mathematica
    Select[Prime@Range[31], PrimeQ[(2^# + 1)/3] && PrimeQ[2^# - 1] &] (* Arkadiusz Wesolowski, Jun 01 2013 *)
  • PARI
    forprime(p=2, 1e3, if (!((2^p+1) % 3) && isprime((2^p+1)/3) && isprime(2^p-1), print1(p, ", "))); \\ Altug Alkan, Sep 25 2015