A107360 Numbers p (necessarily prime) such that 2^p - 1 is a Mersenne prime and (2^p+1)/3 is a Wagstaff prime.
3, 5, 7, 13, 17, 19, 31, 61, 127
Offset: 1
References
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 83.
Links
- P. T. Bateman, J. L. Selfridge and S. S. Wagstaff, Jr., The New Mersenne Conjecture, Amer. Math. Monthly 96, 125-128, 1989.
- Chris K. Caldwell, Prime Pages, The New Mersenne Prime Conjecture
- Andreas Höglund, New Mersenne Conjecture
- Carlos Rivera, Conjecture 15 - The New Mersenne Conjecture, The Prime Puzzles & Problems Connection.
- James Wanless, Mersenneplustwo Factorizations (for p in known Mersenne-prime exponents, all Wagstaff numbers have factors except p = 19937, 30402457, 74207281)
- James Wanless, posts to Google group "Mersenneplustwo" show that Wagstaff p = 30402457, 42643801 are composite by PRP test and Wagstaff p = 74207281 is composite by PRP test
- Wikipedia, New Mersenne conjecture
Programs
-
Magma
[p: p in PrimesUpTo(500) | IsPrime(2^p-1) and IsPrime((2^p+1) div 3)]; // Vincenzo Librandi, Sep 25 2015
-
Mathematica
Select[Prime@Range[31], PrimeQ[(2^# + 1)/3] && PrimeQ[2^# - 1] &] (* Arkadiusz Wesolowski, Jun 01 2013 *)
-
PARI
forprime(p=2, 1e3, if (!((2^p+1) % 3) && isprime((2^p+1)/3) && isprime(2^p-1), print1(p, ", "))); \\ Altug Alkan, Sep 25 2015
Comments