A103314 Total number of subsets of the n-th roots of 1 that add to zero.
1, 1, 2, 2, 4, 2, 10, 2, 16, 8, 34, 2, 100, 2, 130, 38, 256, 2, 1000, 2, 1156, 134, 2050, 2, 10000, 32, 8194, 512, 16900, 2, 146854, 2, 65536, 2054, 131074, 158, 1000000, 2, 524290, 8198, 1336336, 2, 11680390, 2, 4202500, 54872, 8388610, 2, 100000000, 128
Offset: 0
A107753 Number of primitive subsets of the n-th roots of unity summing to zero.
1, 2, 2, 3, 2, 6, 2, 5, 4, 8, 2, 11, 2, 10, 9, 9, 2, 16, 2, 15, 11, 14, 2, 21, 6, 16, 10, 19, 2, 212, 2, 17, 15, 20, 13, 31, 2, 22, 17, 29, 2
Offset: 1
Keywords
Comments
A primitive subset has no nonempty proper subset whose members sum to zero. Note that a(30) is the first term for which the formulas do not apply. For n=30, there are 1,0,15,10,0,5,30,60,60,30 primitive subsets of size 0,1,2,...,9.
Crossrefs
Formula
For primes p and q, if n = p^i, then a(n)=1+n/p; if n=p^i q^j, then a(n)=1+n/p+n/q.
A299807 Rectangular array read by antidiagonals: T(n,k) is the number of distinct sums of k complex n-th roots of 1, n >= 1, k >= 0.
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 9, 10, 5, 1, 1, 6, 15, 16, 15, 6, 1, 1, 7, 19, 35, 25, 21, 7, 1, 1, 8, 28, 37, 70, 36, 28, 8, 1, 1, 9, 33, 84, 61, 126, 49, 36, 9, 1, 1, 10, 45, 96, 210, 91, 210, 64, 45, 10, 1, 1, 11, 51, 163, 225, 462, 127, 330, 81, 55, 11, 1, 1, 12, 66, 180, 477, 456, 924, 169, 495, 100, 66
Offset: 1
Examples
Array starts: n=1: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... n=2: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ... n=3: 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, ... n=4: 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, ... n=5: 1, 5, 15, 35, 70, 126, 210, 330, 495, 715, 1001, ... n=6: 1, 6, 19, 37, 61, 91, 127, 169, 217, 271, 331, ... n=7: 1, 7, 28, 84, 210, 462, 924, 1716, 3003, 5005, 8008, ... n=8: 1, 8, 33, 96, 225, 456, 833, 1408, 2241, 3400, 4961, ... n=9: 1, 9, 45, 163, 477, 1197, 2674, 5454, 10341, 18469, 31383, ... n=10: 1, 10, 51, 180, 501, 1131, 2221, 3951, 6531, 10201, 15231, ... ...
Links
- Max Alekseyev, Table of n, a(n) for n = 1..351
Crossrefs
Formula
From Chai Wah Wu, May 28 2018: (Start)
The following are all conjectures.
For m >= 0, the 2^(m+1)-th row are the figurate numbers based on the 2^m-dimensional regular convex polytope with g.f.: (1+x)^(2^m-1)/(1-x)^(2^m+1).
For p prime, the n=p row corresponds to binomial(k+p-1,p-1) for k = 0,1,2,3,..., which is the maximum possible (i.e., the number of combinations with repetitions of k choices from p categories) with g.f.: 1/(1-x)^p.
(End)
Extensions
Row 6 corrected by Max Alekseyev, Aug 14 2022
A108417 Number of subsets of the n-th roots of 1 with absolute value of sum = 1.
0, 1, 2, 6, 8, 10, 36, 14, 64, 72, 180, 22, 720, 26, 924, 600, 2048, 34, 10800, 38, 12240, 2856, 22572, 46, 144000
Offset: 0
Comments
a(n) is divisible by n (rotation symmetry). a(n)/n differs from A107754 by a factor of 2 for odd n.
Programs
-
Mathematica
<
A299754 Number of distinct sums of n complex n-th roots of 1.
1, 3, 10, 25, 126, 127, 1716, 2241, 18469, 15231, 352716, 36973, 5200300, 1799995, 30333601, 24331777, 1166803110, 12247363, 17672631900, 723276561
Offset: 1
Keywords
Comments
a(n) == 1 (mod n).
Also, a(n) equals the size of the set { f(x) mod Phi_n(x) }, where f(x) runs over the polynomials of degree at most n-1 with nonnegative integer coefficients such that f(1)=n (i.e. the coefficients sum to n), Phi_n(x) is the n-th cyclotomic polynomial. In particular, for prime n, Phi_n(x)=1+x+...+x^(n-1) and thus all f(x) mod Phi_n(x) are distinct, implying that a(n)=binomial(2*n-1,n). - Max Alekseyev, Feb 20 2018
Examples
From _M. F. Hasler_, Feb 18 2018: (Start) For n=2, the n-th roots of unity are U[2] = {-1, 1}, and taking x, y in this set, we can get x + y = -2, 0 or 2. For n=3, the n-th roots of unity are U[3] = {1, w, w^2} where w = exp(2i*Pi/3) = -1/2 + i sqrt(3)/2, and taking x, y, z in this set, we can get x + y + z to be any of the 10 distinct values { 3, 2 + w, 2 + w^2, 1 + 2w, 1 + 2w^2, 0, w - 1, w^2 - 1, 3w, 3w^2 }. (End)
Programs
-
Maple
nexti:= proc(i,N) local ip,j,k; ip:= i; for k from N to 1 by -1 while i[k]=N-1 do od; if k=0 then return NULL fi; ip[k]:= ip[k]+1; for j from k+1 to N do ip[j]:= ip[k] od; ip end proc: f:= proc(N) local S, i,P,z; S:= {}: i:= <(0$N)>: P:= numtheory:-cyclotomic(N,z); while i <> NULL do S:= S union {rem(add(z^i[k],k=1..N),P,z)}; i:= nexti(i,N); od; nops(S); end proc: seq(f(N),N=1..10); # Robert Israel, Feb 18 2018
-
Mathematica
a[n_] := (t = Table[Exp[2 k Pi I/n], {k, 0, n - 1}]; b[0] = 1; iter = Table[{b[j], b[j - 1], n}, {j, 1, n}]; msets = Table[Array[b, n], Evaluate[Sequence @@ iter]]; tot = Total /@ (t[[#]] & /@ Flatten[msets, n - 1]) // N; u = Union[tot, SameTest -> (Chop[Abs[#1 - #2]] == 0 &)]; u // Length); Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 10}] (* Jean-François Alcover, Feb 19 2018 *)
-
PARI
a(n,U=vector(n,k,bestappr(exp(2*Pi/n*k*I),5*2^n)),S=[])={forvec(i=vector(n,k,[1,n]),S=setunion(S,[vecsum(vecextract(U,i))]));#S} \\ Not very efficient for n > 8. - M. F. Hasler, Feb 18 2018
Formula
For prime p, a(p) = binomial(2*p-1,p). - Conjectured by Robert Israel, Feb 18 2018; proved by Max Alekseyev, Feb 20 2018
a(n) = A299807(n,n). - Max Alekseyev, Feb 25 2018
Extensions
a(1) through a(11) from Robert Israel, Feb 18 2018
a(12)-a(13) from Chai Wah Wu, Feb 20 2018
a(14)-a(20) from Max Alekseyev, Feb 22 2018
A108416 Triangle read by rows: T(n,k) counts the k-subsets of the n-th roots of 1 with absolute value of sum=1.
0, 0, 1, 0, 2, 0, 3, 0, 4, 0, 0, 5, 0, 0, 6, 6, 12, 0, 7, 0, 0, 0, 8, 0, 24, 0, 0, 9, 9, 0, 18, 0, 10, 0, 40, 10, 60, 0, 11, 0, 0, 0, 0, 0, 12, 12, 60, 72, 144, 120, 0, 13, 0, 0, 0, 0, 0, 0, 14, 0, 84, 0, 210, 14, 280, 0, 15, 15, 0, 75, 60, 30, 105, 0, 16, 0, 112, 0, 336, 0, 560, 0, 0, 17, 0, 0
Offset: 0
Comments
Row n is divisible by n (rotation symmetry).
Row sums: A108417.
Examples
T(6,2)=6, counting {1,3}, {1,5}, {2,4}, {2,6}, {3,5}, {4,6}. Table starts: 0, 0, 1, 0, 2, 0, 0, 3, 3, 0, 0, 4, 0, 4, 0, 0, 5, 0, 0, 5, 0, 0, 6, 6,12, 6, 6, 0, 0, 7, 0, 0, 0, 0, 7, 0, 0, 8, 0,24, 0,24, 0, 8, 0, 0, 9, 9, 0,18,18, 0, 9, 9, 0
Programs
-
Mathematica
<
A354343 Number of distinct sums of n complex 6th power roots of unity.
1, 6, 19, 37, 61, 91, 127, 169, 217, 271, 331, 397, 469, 547, 631, 721, 817, 919, 1027, 1141, 1261, 1387, 1519, 1657, 1801, 1951, 2107, 2269, 2437, 2611, 2791, 2977, 3169, 3367, 3571, 3781, 3997, 4219, 4447, 4681, 4921, 5167, 5419, 5677, 5941, 6211, 6487, 6769, 7057, 7351, 7651, 7957
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{3,-3,1},{1,6,19,37,61},60] (* Harvey P. Dale, Nov 03 2024 *)
-
PARI
a(n)=if(n==1, 6, 3*n*(n+1)+1) \\ Charles R Greathouse IV, Aug 15 2022
Formula
For n >= 2, a(n) = 3*n^2 + 3*n + 1 = A003215(n).
For n >= 5, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f. (1 + 3*x + 4*x^2 - 3*x^3 + x^4) / (1 - x)^3.
Comments
Links
Crossrefs
Programs
Mathematica
PARI
Formula
Extensions