cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A010021 a(0) = 1, a(n) = 32*n^2 + 2 for n > 0.

Original entry on oeis.org

1, 34, 130, 290, 514, 802, 1154, 1570, 2050, 2594, 3202, 3874, 4610, 5410, 6274, 7202, 8194, 9250, 10370, 11554, 12802, 14114, 15490, 16930, 18434, 20002, 21634, 23330, 25090, 26914, 28802, 30754, 32770, 34850, 36994, 39202, 41474, 43810, 46210, 48674, 51202
Offset: 0

Views

Author

Keywords

Comments

From Omar E. Pol, Apr 21 2021: (Start)
Sequence found by reading the line segment from 1 to 34 together with the line from 34, in the direction 34, 130, ..., in the rectangular spiral whose vertices are the generalized 18-gonal numbers A274979.
The spiral begins as follows:
46_ _ _ _ _ _ _ _ _ _18
| |
| 0 |
| | _ _ _ _ |
| 1 15
|
51
(End)

Crossrefs

Cf. A274979 (generalized 18-gonal numbers).

Programs

  • Mathematica
    Join[{1}, 32 Range[40]^2 + 2] (* Bruno Berselli, Feb 07 2012 *)
    CoefficientList[Series[(1 + x) (1 + 30 x + x^2)/(1 - x)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Jun 25 2014 *)

Formula

G.f.: (1+x)*(1+30*x+x^2)/(1-x)^3. [Bruno Berselli, Feb 07 2012]
a(n) = A005893(4n) = A008527(2n); a(n+1) = A108100(2n+2). [Bruno Berselli, Feb 07 2012]
E.g.f.: (x*(x+1)*32+2)*e^x-1. - Gopinath A. R., Feb 14 2012
a(n) = (4n+1)^2+(4n-1)^2 for n>0. [Bruno Berselli, Jun 24 2014]
a(n) = A244082(n) + 2, n >= 1. - Omar E. Pol, Apr 21 2021
Sum_{n>=0} 1/a(n) = 3/4 + Pi/16*coth(Pi/4) = 1.04940725316131.. - R. J. Mathar, May 07 2024
a(n) = 2*A108211(n). - R. J. Mathar, May 07 2024
a(n) = A195315(n)+A195315(n+1). - R. J. Mathar, May 07 2024

A158686 a(n) = 64*n^2 + 1.

Original entry on oeis.org

1, 65, 257, 577, 1025, 1601, 2305, 3137, 4097, 5185, 6401, 7745, 9217, 10817, 12545, 14401, 16385, 18497, 20737, 23105, 25601, 28225, 30977, 33857, 36865, 40001, 43265, 46657, 50177, 53825, 57601, 61505, 65537, 69697, 73985, 78401, 82945, 87617, 92417, 97345, 102401
Offset: 0

Views

Author

Vincenzo Librandi, Mar 24 2009

Keywords

Comments

The identity (64*n^2 + 1)^2 - (1024*n^2 + 32)*(2*n)^2 = 1 can be written as a(n)^2 - A158685(n)*(A005843(n))^2 = 1.

Crossrefs

Programs

  • Magma
    [64*n^2+1: n in [0..40]]; // Vincenzo Librandi, Sep 11 2013
    
  • Mathematica
    64 Range[0, 40]^2 + 1 (* or *) LinearRecurrence[{3, -3, 1}, {1, 65, 257}, 40] (* Harvey P. Dale, Jan 24 2012 *)
    CoefficientList[Series[- (1 + 62 x + 65 x^2) / (x - 1)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Sep 11 2013 *)
  • PARI
    a(n)=64*n^2+1 \\ Charles R Greathouse IV, Jun 17 2017

Formula

G.f.: -(1+62*x+65*x^2)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
From Amiram Eldar, Mar 21 2023: (Start)
Sum_{n>=0} 1/a(n) = (coth(Pi/8)*Pi/8 + 1)/2.
Sum_{n>=0} (-1)^n/a(n) = (cosech(Pi/8)*Pi/8 + 1)/2. (End)
From Elmo R. Oliveira, Jan 17 2025: (Start)
E.g.f.: exp(x)*(1 + 64*x + 64*x^2).
a(n) = A108211(2*n) for n > 0. (End)

Extensions

Comment rewritten, a(0) added and formula replaced by R. J. Mathar, Oct 22 2009

A158488 a(n) = 64*n^2 + 8.

Original entry on oeis.org

72, 264, 584, 1032, 1608, 2312, 3144, 4104, 5192, 6408, 7752, 9224, 10824, 12552, 14408, 16392, 18504, 20744, 23112, 25608, 28232, 30984, 33864, 36872, 40008, 43272, 46664, 50184, 53832, 57608, 61512, 65544, 69704, 73992, 78408, 82952, 87624, 92424, 97352, 102408
Offset: 1

Views

Author

Vincenzo Librandi, Mar 20 2009

Keywords

Comments

The identity (16*n^2 + 1)^2 - (64*n^2 + 8)*(2*n)^2 = 1 can be written as A108211(n)^2 - a(n)*A005843(n)^2 = 1. - rewritten by Bruno Berselli, Nov 16 2011

Crossrefs

Programs

  • Magma
    I:=[72,264,584]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..50]]; // Vincenzo Librandi, Feb 08 2012
    
  • Maple
    A158488:=n->64*n^2+8: seq(A158488(n), n=1..50); # Wesley Ivan Hurt, Apr 08 2017
  • Mathematica
    64Range[40]^2+8 (* or *) LinearRecurrence[{3,-3,1},{72,264,584},40] (* Harvey P. Dale, Nov 16 2011 *)
  • PARI
    for(n=1, 40, print1(64*n^2 + 8", ")); \\ Vincenzo Librandi, Feb 08 2012

Formula

a(1)=72, a(2)=264, a(3)=584, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Nov 16 2011
G.f: x*(72 + 48*x + 8*x^2)/(1-x)^3. - Vincenzo Librandi, Feb 08 2012
From Amiram Eldar, Mar 05 2023: (Start)
Sum_{n>=1} 1/a(n) = (coth(Pi/(2*sqrt(2)))*Pi/(2*sqrt(2)) - 1)/16.
Sum_{n>=1} (-1)^(n+1)/a(n) = (1 - cosech(Pi/(2*sqrt(2)))*Pi/(2*sqrt(2)))/16. (End)
From Elmo R. Oliveira, Jan 15 2025: (Start)
E.g.f.: 8*(exp(x)*(8*x^2 + 8*x + 1) - 1).
a(n) = 8*A081585(n). (End)
Showing 1-3 of 3 results.