cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A179336 Primes containing at least one prime digit in base 10.

Original entry on oeis.org

2, 3, 5, 7, 13, 17, 23, 29, 31, 37, 43, 47, 53, 59, 67, 71, 73, 79, 83, 97, 103, 107, 113, 127, 131, 137, 139, 151, 157, 163, 167, 173, 179, 193, 197, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 11 2010

Keywords

Comments

a(n) = A080608(n) for n<28; A080608 is a subsequence;
A179335(n) < 10 iff prime(n) is in this sequence;
A109066(n) > 0 iff prime(n) is in this sequence. [Corrected by M. F. Hasler, Aug 27 2012]

Crossrefs

Intersection of A118950 and A000040; relative complement A000040 \ A034844.

Programs

  • Haskell
    a179336 n = a179336_list !! (n-1)
    a179336_list = filter (any (`elem` "2357") . show ) a000040_list
    -- Reinhard Zumkeller, Jul 19 2011

Formula

a(n) ~ n log n. - Charles R Greathouse IV, Nov 01 2022

A134966 Primes that use all of the prime digits 2,3,5,7 exactly once.

Original entry on oeis.org

2357, 2753, 3257, 3527, 5237, 5273, 7253, 7523
Offset: 1

Views

Author

Lekraj Beedassy, Feb 04 2008

Keywords

Comments

Permutations of the four prime digits 2, 3, 5, 7 that are primes. - Lekraj Beedassy, May 12 2009

Crossrefs

Programs

  • Mathematica
    Select[FromDigits/@Permutations[{2,3,5,7}],PrimeQ] (* Harvey P. Dale, Jul 04 2013 *)

A153770 Primes with a prime number of digits and using all of the prime digits 2, 3, 5, 7 at least once and no other digits.

Original entry on oeis.org

22573, 23357, 23537, 23557, 23753, 25237, 25357, 25373, 25537, 25733, 27253, 32257, 32537, 32573, 35227, 35257, 35327, 35527, 37253, 52237, 52733, 53327, 53527, 57223, 72253, 72353, 72533, 73523, 75223, 75253, 75323
Offset: 1

Views

Author

Lekraj Beedassy, Jan 01 2009

Keywords

Comments

Subsequence of A108419.

Crossrefs

Extensions

List sorted and 2 duplicates removed by Georg Fischer, Mar 20 2022
Clarified definition. - N. J. A. Sloane, Apr 03 2022

A157527 Primes using only the composite digits (4, 6, 8, 9) and all of them.

Original entry on oeis.org

46489, 46889, 48649, 48869, 64489, 64849, 68449, 68489, 84649, 84869, 88469, 444869, 448969, 449689, 468499, 468869, 468889, 468899, 469849, 486449, 486869, 486949, 488689, 489689, 489869, 496849, 496889, 498469, 498689, 644489, 644869
Offset: 1

Views

Author

Lekraj Beedassy, Mar 02 2009, Mar 03 2009

Keywords

Comments

Subsequence of A051416.
There are no 4-digit terms so each term must have at least one repeating digit. - Harvey P. Dale, Oct 05 2023

Crossrefs

Programs

  • Maple
    a := proc (n) if convert(convert(ithprime(n), base, 10), set) = {4, 6, 8, 9} then ithprime(n) else end if end proc: seq(a(n), n = 1 .. 53000); # Emeric Deutsch, Mar 03 2009
    isA157527 := proc(n) local dgs ; if not isprime(n) then false; else dgs := convert(convert(n,base,10),set) ; if dgs intersect {4,6,8,9} <> {4,6,8,9} then false; elif dgs intersect {0,1,2,3,5,7} <> {} then false; else true; fi; fi; end: for n from 1 to 100000 do p := ithprime(n) ; if isA157527(p) then printf("%d,",p) ; fi; od: # R. J. Mathar, Mar 03 2009
  • Mathematica
    With[{c={4,6,8,9}},Select[Flatten[Table[10 FromDigits/@Tuples[c,n]+9,{n,5}]],PrimeQ[#] && Intersection[c,IntegerDigits[#]]==c&]] (* Harvey P. Dale, Oct 05 2023 *)

Extensions

Corrected and extended by numerous correspondents, Mar 04 2009
Showing 1-4 of 4 results.